44 research outputs found

    Electrodeposited Cobalt-Copper mixed oxides for supercapacitor electrodes and investigation of the Co/Cu ratio on the electrochemical performance

    Get PDF
    In this study, different Cobalt-Copper mixed oxides compositions for supercapacitor electrodes have been prepared, by means of electrodeposition and thermal annealing. The chemical-physical and electrochemical characterization of electrodes, as well as the effect of different Co/Cu in the ratios on the crystal lattice, electrode morphologies, and electrochemical performance of the electrodes, were investigated using X-ray diffraction (XRD), scanning electron microscopic (SEM) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) tests. The results indicated that the electrode prepared from 0.06 M CoSO4 center dot 7H(2)O + 0.04 M CuSO4 center dot 5H(2)O solution (CC4) had a better electrochemical performance. The initial capacity of the CC4 electrode was 28.3 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 94%. CC4 electrode featured capacity retention of 79.2% at a constant current density of 1 A/g after 5000 cycles

    Hypozincemia in bipolar i disorder (BID) patients

    Get PDF
    One-third of the world's population is at risk of zinc deficiency. It has been hypothesized that low serum/plasma zinc may contribute to alteration of brain Zn homeostasis and thus had to various psychological disorders. This study was designed to evaluate serum zinc (Zn) as well as copper (Cu) concentrations in patients with Bipolar I Disorder (BID) in our community to support the findings on the possible association of Zn in neuropsychological functions. Participants included 30 BID patients with different phases of mania and depression and 30 healthy controls. Results indicated the mean serum Zn level of the BID group was significantly lower than that of controls (P< 0.0001). Similar results were obtained for Cu. These findings suggest a possible association of Zn levels on neuropsychological dysfunction. Copyright © 2007 by New Century Health Publishers, LLC. All rights of reproduction in any form reserved

    Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serovars of the human pathogen <it>Chlamydia trachomatis </it>occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. In contrast, the gene that determines serovar specificity, <it>ompA</it>, has a phylogenetic association that is not congruent with tissue tropism and has a degree of nucleotide variability much higher than other genomic loci. The <it>ompA </it>gene encodes the major surface-exposed antigenic determinant, and the observed nucleotide diversity at the <it>ompA </it>locus is thought to be due to recombination and host immune selection pressure. The possible contribution of a localized increase in mutation rate, however, has not been investigated.</p> <p>Results</p> <p>Nucleotide diversity and phylogenetic relationships of the five constant and four variable domains of the <it>ompA </it>gene, as well as several loci surrounding <it>ompA</it>, were examined for each serovar. The loci flanking the <it>ompA </it>gene demonstrated that nucleotide diversity increased monotonically as <it>ompA </it>is approached and that their gene trees are not congruent with either <it>ompA </it>or tissue tropism. The variable domains of the <it>ompA </it>gene had a very high level of non-synonymous change, which is expected as these regions encode the surface-exposed epitopes and are under positive selection. However, the synonymous changes are clustered in the variable regions compared to the constant domains; if hitchhiking were to account for the increase in synonymous changes, these substitutions should be more evenly distributed across the gene. Recombination also cannot entirely account for this increase as the phylogenetic relationships of the constant and variable domains are congruent with each other.</p> <p>Conclusions</p> <p>The high number of synonymous substitutions observed within the variable domains of <it>ompA </it>appears to be due to an increased mutation rate within this region of the genome, whereas the increase in nucleotide substitution rate and the lack of phylogenetic congruence in the regions flanking <it>ompA </it>are characteristic motifs of gene conversion. Together, the increased mutation rate in the <it>ompA </it>gene, in conjunction with gene conversion and positive selection, results in a high degree of variability that promotes host immune evasion.</p

    Detailed Analysis of Sequence Changes Occurring during vlsE Antigenic Variation in the Mouse Model of Borrelia burgdorferi Infection

    Get PDF
    Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained “template-independent” sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses

    Electrodeposition of Cobalt-Copper Oxides Decorated with Conductive Polymer for Supercapacitor Electrodes with High Stability

    Get PDF
    Here, we report about the synthesis of Cobalt-Copper (CC) mixed oxides prepared by electrodeposition and thermal annealing, and coated with PEDOT:PSS (CCP) for supercapacitor electrodes. The electrodes' morphology and electrochemical performance were investigated by combining XRD, XPS, SEM, cyclic voltammetry, and galvanostatic charge/discharge tests. The initial capacity of the CC electrode was 26 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 92 %. The CC electrode featured a capacity retention of 81 % at a constant current density of 1 A/g after 5000 cycles. CCP electrodes slightly reduced the specific capacity but increased both coulombic efficiency and cyclic stability. CCP1 electrode featured a specific capacity of 21 mAh/g at 5 mV/s scan rate with better coulombic efficiency 95 % along with capacity retention of 92.3 % over 5000 cycles. Increasing the amount of PEDOT:PSS lowered the CC electrodes' specific capacity, but significantly improved the capacity retention up to 100 %

    Development of a Mycoplasma gallisepticum

    No full text
    Mycoplasma gallisepticum causes chronic respiratory disease in chickens and is also highly pathogenic in turkeys. Several live attenuated M. gallisepticum vaccines are available for prevention of disease in chickens but they are considered to be either not safe or not efficacious in turkeys. The studies presented here aimed to develop a suitable infection model in turkeys, a prerequisite for development of a vaccine against M. gallisepticum for turkeys. Two wild-type Australian M. gallisepticum strains, Ap3AS and 100809/31, were used and their capacity to induce lesions was evaluated in 5-week-old to 6-week-old turkeys exposed to aerosols of these strains. Gross air sac lesion scores in the group exposed to Ap3AS were significantly greater than those in the group exposed to 100809/31 (P < 0.05). Histological tracheal lesion scores and tracheal mucosal thicknesses were significantly greater in birds exposed to either strain than in the unexposed birds (P < 0.05), but no significant differences were observed between the two infected groups. In a subsequent experiment, 6-week-old to 7-week-old turkeys were exposed to different doses of M. gallisepticum Ap3AS. Serology and M. gallisepticum re-isolation performed 14 days after infection showed that all birds exposed to Ap3AS were positive by rapid serum agglutination and by culture. Gross air sac lesion scores in the groups exposed to the highest dose, 8.17 × 108colour-changing units Ap3AS/ml, as well as a 10-fold lower dose were significantly more severe than in the uninfected control group. Lesion scores and tracheal mucosal thicknesses were significantly greater in birds exposed to Ap3AS than in the unexposed birds (P < 0.05). However, no significant differences were seen in tracheal mucosal thicknesses or lesion scores between the groups exposed to the different doses of Ap3AS. This study has established a reliable challenge model for M. gallisepticum infection in turkeys, which will be useful for evaluation of potential M. gallisepticum vaccine candidates for this species
    corecore