252 research outputs found

    Slepton Oscillation at Large Hadron Collider

    Get PDF
    Measurement of Lepton-Flavor Violation (LFV) in the minimal SUSY Standard Model (MSSM) at Large Hadron Collider (LHC) is studied based on a realistic simulation. We consider the LFV decay of the second-lightest neutralino, χ~20l~lllχ~10\tilde{\chi}^0_2 \to \tilde{l} l' \to l l' \tilde{\chi}^0_1, in the case where the flavor mixing exists in the right-handed sleptons. We scan the parameter space of the minimal supergravity model (MSUGRA) and a more generic model in which we take the Higgsino mass μ\mu as a free parameter. We find that the possibility of observing LFV at LHC is higher if μ\mu is smaller than the MSUGRA prediction; the LFV search at LHC can cover the parameter range where the μeγ\mu \to e \gamma decay can be suppressed by the cancellation among the diagrams for this case.Comment: 29 pages, 10 figure

    A Complete Theory of Grand Unification in Five Dimensions

    Full text link
    A fully realistic unified theory is constructed, with SU(5) gauge symmetry and supersymmetry both broken by boundary conditions in a fifth dimension. Despite the local explicit breaking of SU(5) at a boundary of the dimension, the large size of the extra dimension allows precise predictions for gauge coupling unification, alpha_s(M_Z) = 0.118 \pm 0.003, and for Yukawa coupling unification, m_b(M_Z) = 3.3 \pm 0.2 GeV. A complete understanding of the MSSM Higgs sector is given; with explanations for why the Higgs triplets are heavy, why the Higgs doublets are protected from a large tree-level mass, and why the mu and B parameters are naturally generated to be of order the SUSY breaking scale. All sources of d=4,5 proton decay are forbidden, while a new origin for d=6 proton decay is found to be important. Several aspects of flavor follow from an essentially unique choice of matter location in the fifth dimension: only the third generation has an SU(5) mass relation, and the lighter two generations have small mixings with the heaviest generation. The entire superpartner spectrum is predicted in terms of only two free parameters. The squark and slepton masses are determined by their location in the fifth dimension, allowing a significant experimental test of the detailed structure of the extra dimension. Lepton flavor violation is found to be generically large in higher dimensional unified theories with high mediation scales of SUSY breaking. In our theory this forces a common location for all three neutrinos, predicting large neutrino mixing angles. Rates for mu -> e gamma, mu -> e e e, mu -> e conversion and tau -> mu gamma are larger in our theory than in conventional 4D supersymmetric GUTs. Proposed experiments probing mu -> e transitions will probe the entire interesting parameter space of our theory.Comment: 51 pages, late

    Probing Left-handed Slepton Flavor Mixing at Future Lepton Colliders

    Get PDF
    It has been argued in the literature that the search for the slepton oscillation phenomenon can be a powerful probe of intergenerational mixing between sleptons, once sleptons are found at future colliders. In this article we estimate possible reach of future lepton colliders in probing left-handed slepton flavor mixing, especially mixing between the first and third generations, on which constraints imposed by other processes like τeγ\tau \to e \gamma are very weak. e+ee^+e^- collider is suitable for this purpose, since it can produce, if kinematically allowed, sleptons of the first generation via t-channel, in addition to s-channel. Utilizing e^+e^- \to \tau e + 4jets + \E signal at e+ee^+e^- linear collider with integrated luminosity L=50 fb^{-1}(500 fb^{-1}) it may be possible to reach mixing angle sin2θν~0.06(0.04)\sin 2\theta_{\tilde{\nu}} \gtrsim 0.06 (0.04) and mass difference Δmν~0.07(0.04)\Delta m_{\tilde{\nu}} \gtrsim 0.07 (0.04) GeV for sneutrinos in the first and third generations at the statistical significance of 5 \sigma.Comment: 27 pages, 6 figures. A new section added. Conclusion unchanged. To appear in Phys. Rev.

    Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix

    Full text link
    The tiny neutrino masses measured in the neutrino oscillation experiments can be naturally explained by the supersymmetric see-saw mechanism. If the supersymmetry breaking is mediated by gravity, the see-saw models may predict observable lepton flavor violating effects. In this work, we investigate the lepton flavor violating process μeγ\mu\to e\gamma in the kind of neutrino mass models based on the idea of the ``lopsided'' form of the charged lepton mass matrix. The constraints set by the muon anomalous magnetic moment are taken into account. We find the present models generally predict a much larger branching ratio of μeγ\mu\to e\gamma than the experimental limit. Conversely, this process may give strong constraint on the lepton flavor structure. Following this constraint we then find a new kind of the charged lepton mass matrix. The feature of the structure is that both the elements between the 2-3 and 1-3 generations are ``lopsided''. This structure produces a very small 1-3 mixing and a large 1-2 mixing in the charged lepton sector, which naturally leads to small Br(μeγ)Br(\mu\to e\gamma) and the LMA solution for the solar neutrino problem.Comment: 24 pages, 8 figure

    The structural basis of bacterial manganese import

    Get PDF
    Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.Stephanie L. Neville, Jennie Sjöhamn, Jacinta A. Watts, Hugo MacDermott-Opeskin, Stephen J. Fairweather, Katherine Ganio, Alex Carey Hulyer, Aaron P. McGrath, Andrew J. Hayes, Tess R. Malcolm, Mark R. Davies, Norimichi Nomura, So Iwata, Megan L. O’Mara, Megan J. Maher, Christopher A. McDevit

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore