2,430 research outputs found

    Metallicity structure in X-ray bright galaxy groups

    Full text link
    Using Chandra X-ray data of a sample of 15 X-ray bright galaxy groups, we present preliminary results of a coherent study of the radial distribution of metal abundances in the hot gas in groups. The iron content in group outskirts is found to be lower than in clusters by a factor of ~2, despite showing mean levels in the central regions comparable to those of clusters. The abundance profiles are used to constrain the contribution from supernovae type Ia and II to the chemical enrichment and thermal energy of the intragroup medium at different group radii. The results suggest a scenario in which a substantial fraction of the chemical enrichment of groups took place in filaments prior to group collapse.Comment: 5 pages, 2 figures. To appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Burissova (Springer

    Optical Emission from Aspherical Supernovae and the Hypernova SN 1998bw

    Full text link
    A fully 3D Monte Carlo scheme is applied to compute optical bolometric light curves for aspherical (jet-like) supernova explosion models. Density and abundance distributions are taken from hydrodynamic explosion models, with the energy varied as a parameter to explore the dependence. Our models show initially a very large degree (4\sim 4 depending on model parameters) of boosting luminosity toward the polar (zz) direction relative to the equatorial (rr) plane, which decreases as the time of peak is approached. After the peak, the factor of the luminosity boost remains almost constant (1.2\sim 1.2) until the supernova enters the nebular phase. This behavior is due mostly to the aspherical 56^{56}Ni distribution in the earlier phase and to the disk-like inner low-velocity structure in the later phase. Also the aspherical models yield an earlier peak date than the spherical models, especially if viewed from near the z-axis. Aspherical models with ejecta mass \sim 10\Msun are examined, and one with the kinetic energy of the expansion 2±0.5×1052\sim 2 \pm 0.5 \times 10^{52} ergs and a mass of 56^{56}Ni \sim 0.4\Msun yields a light curve in agreement with the observed light curve of SN 1998bw (the prototypical hyper-energetic supernova). The aspherical model is also at least qualitatively consistent with evolution of photospheric velocities, showing large velocities near the z-axis, and with a late-phase nebular spectrum. The viewing angle is close to the z-axis, strengthening the case for the association of SN 1998bw with the gamma ray burst GRB980425.Comment: Accepted by the Astrophysical Journal. 28 pages, 14 figure

    Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae

    Full text link
    Early phase optical spectra of aspherical jet-like supernovae (SNe) are presented. We focus on energetic core-collapse SNe, or hypernovae. Based on hydrodynamic and nucleosynthetic models, radiative transfer in SN atmosphere is solved with a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI. Since the luminosity is boosted in the jet direction, the temperature there is higher than in the equatorial plane by ~ 2,000 K. This causes anisotropic ionization in the ejecta. Emergent spectra are different depending on viewing angle, reflecting both aspherical abundance distribution and anisotropic ionization. Spectra computed with an aspherical explosion model with kinetic energy 20 x 10^{51} ergs are compatible with those of the Type Ic SN 1998bw if ~ 10-20% of the synthesized metals are mixed out to higher velocities. The simulations enable us to predict the properties of off-axis hypernovae. Even if an aspherical hypernova explosion is observed from the side, it should show hypernova-like spectra but with some differences in the line velocity, the width of the Fe absorptions and the strength of the Na I line.Comment: 4 pages, 4 figures. Accepted for publication in The Astrophysical Journal Letter

    Nebular Spectra of SN 1998bw Revisited: Detailed Study by One and Two Dimensional Models

    Full text link
    Refined one- and two-dimensional models for the nebular spectra of the hyper-energetic Type Ic supernova (SN) 1998bw, associated with the gamma-ray burst GRB980425, from 125 to 376 days after B-band maximum are presented. One dimensional, spherically symmetric spectrum synthesis calculations show that reproducing features in the observed spectra, i.e., the sharply peaked [OI] 6300\AA doublet and MgI] 4570\AA emission, and the broad [FeII] blend around 5200\AA, requires the existence of a high-density O-rich core expanding at low velocities (\lsim 8,000 km s1^{-1}) and of Fe-rich material moving faster than the O-rich material. Synthetic spectra at late phases from aspherical (bipolar) explosion models are also computed with a two-dimensional spectrum synthesis code. The above features are naturally explained by the aspherical model if the explosion is viewed from a direction close to the axis of symmetry (30o\sim 30^{\rm o}), since the aspherical model yields a high-density O-rich region confined along the equatorial axis. By examining a large parameter space (in energy and mass), our best model gives following physical quantities: the kinetic energy E51EK/1051E_{51} \equiv E_{\rm K}/10^{51} ergs \gsim 8 - 12 and the main-sequence mass of the progenitor star M_{\rm ms} \gsim 30 - 35 \Msun. The temporal spectral evolution of SN 1998bw also indicates mixing among Fe-, O-, and C-rich regions, and highly clumpy structure.Comment: 38 pages, 22 figures. ApJ, 640 (01 April 2006 issue), in pres

    Final Evolution and Delayed Explosions of Spinning White Dwarfs in Single Degenerate Models for Type Ia Supernovae

    Get PDF
    We study the occurrence of delayed SNe~Ia in the single degenerate (SD) scenario. We assume that a massive carbon-oxygen (CO) white dwarf (WD) accretes matter coming from a companion star, making it to spin at the critical rate. We assume uniform rotation due to magnetic field coupling. The carbon ignition mass for non-rotating WDs is M_{ig}^{NR} \approx 1.38 M_{\odot}; while for the case of uniformly rotating WDs it is a few percent larger (M_{ig}^{R} \approx 1.43 M_{\odot}). When accretion rate decreases, the WD begins to lose angular momentum, shrinks, and spins up; however, it does not overflow its critical rotation rate, avoiding mass shedding. Thus, angular momentum losses can lead the CO WD interior to compression and carbon ignition, which would induce an SN~Ia. The delay, largely due to the angular momentum losses timescale, may be large enough to allow the companion star to evolve to a He WD, becoming undetectable at the moment of explosion. This scenario supports the occurrence of delayed SNe~Ia if the final CO WD mass is 1.38 M_{\odot} < M < 1.43 M_{\odot}. We also find that if the delay is longer than ~3 Gyr, the WD would become too cold to explode, rather undergoing collapse.Comment: 6 pages, 5 figures, published in the Astrophysical Journal Letters, 809, L6 (2015), added some corrections for errat

    On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329

    Full text link
    The net optical light curves and spectra of the supernova (SN) 2003dh are obtained from the published spectra of GRB 030329, covering about 6 days before SN maximum to about 60 days after. The bulk of the U-band flux is subtracted from the observed spectra using early-time afterglow templates, because strong line blanketing greatly depresses the UV and U-band SN flux in a metal-rich, fast-moving SN atmosphere. The blue-end spectra of the gamma-ray burst (GRB)connected hypernova SN 1998bw is used to determine the amount of subtraction. The subtraction of a host galaxy template affects the late-time results. The derived SN 2003dh light curves are narrower than those of SN 1998bw, rising as fast before maximum, reaching a possibly fainter maximum, and then declining ~ 1.2-1.4 times faster. We then build UVOIR bolometric SN light curve. Allowing for uncertainties, it can be reproduced with a spherical ejecta model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following previous spectrum modelling, and M(Ni56) ~ (0.4 +0.15/-0.1) Msun. This suggests a progenitor main-sequence mass of about 25-40 Msun, lower than SN 1998bw but significantly higher than normal Type Ic SNe and the GRB-unrelated hypernova SN 2002ap.Comment: 18 pages, 7 figures, published by Ap
    corecore