2,430 research outputs found
Metallicity structure in X-ray bright galaxy groups
Using Chandra X-ray data of a sample of 15 X-ray bright galaxy groups, we
present preliminary results of a coherent study of the radial distribution of
metal abundances in the hot gas in groups. The iron content in group outskirts
is found to be lower than in clusters by a factor of ~2, despite showing mean
levels in the central regions comparable to those of clusters. The abundance
profiles are used to constrain the contribution from supernovae type Ia and II
to the chemical enrichment and thermal energy of the intragroup medium at
different group radii. The results suggest a scenario in which a substantial
fraction of the chemical enrichment of groups took place in filaments prior to
group collapse.Comment: 5 pages, 2 figures. To appear in the proceedings of ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Burissova (Springer
Optical Emission from Aspherical Supernovae and the Hypernova SN 1998bw
A fully 3D Monte Carlo scheme is applied to compute optical bolometric light
curves for aspherical (jet-like) supernova explosion models. Density and
abundance distributions are taken from hydrodynamic explosion models, with the
energy varied as a parameter to explore the dependence. Our models show
initially a very large degree ( depending on model parameters) of
boosting luminosity toward the polar () direction relative to the equatorial
() plane, which decreases as the time of peak is approached. After the peak,
the factor of the luminosity boost remains almost constant () until
the supernova enters the nebular phase. This behavior is due mostly to the
aspherical Ni distribution in the earlier phase and to the disk-like
inner low-velocity structure in the later phase. Also the aspherical models
yield an earlier peak date than the spherical models, especially if viewed from
near the z-axis. Aspherical models with ejecta mass \sim 10\Msun are
examined, and one with the kinetic energy of the expansion ergs and a mass of Ni \sim 0.4\Msun yields a light
curve in agreement with the observed light curve of SN 1998bw (the prototypical
hyper-energetic supernova). The aspherical model is also at least qualitatively
consistent with evolution of photospheric velocities, showing large velocities
near the z-axis, and with a late-phase nebular spectrum. The viewing angle is
close to the z-axis, strengthening the case for the association of SN 1998bw
with the gamma ray burst GRB980425.Comment: Accepted by the Astrophysical Journal. 28 pages, 14 figure
Recommended from our members
Midbrain Dopamine Neurons Signal Belief in Choice Accuracy during a Perceptual Decision
Central to the organization of behavior is the ability to predict the values of outcomes to guide choices. The accuracy of such predictions is honed by a teaching signal that indicates how incorrect a prediction was (“reward prediction error,” RPE). In several reinforcement learning contexts, such as Pavlovian conditioning and decisions guided by reward history, this RPE signal is provided by midbrain dopamine neurons. In many situations, however, the stimuli predictive of outcomes are perceptually ambiguous. Perceptual uncertainty is known to influence choices, but it has been unclear whether or how dopamine neurons factor it into their teaching signal. To cope with uncertainty, we extended a reinforcement learning model with a belief state about the perceptually ambiguous stimulus; this model generates an estimate of the probability of choice correctness, termed decision confidence. We show that dopamine responses in monkeys performing a perceptually ambiguous decision task comply with the model’s predictions. Consequently, dopamine responses did not simply reflect a stimulus’ average expected reward value but were predictive of the trial-to-trial fluctuations in perceptual accuracy. These confidence-dependent dopamine responses emerged prior to monkeys’ choice initiation, raising the possibility that dopamine impacts impending decisions, in addition to encoding a post-decision teaching signal. Finally, by manipulating reward size, we found that dopamine neurons reflect both the upcoming reward size and the confidence in achieving it. Together, our results show that dopamine responses convey teaching signals that are also appropriate for perceptual decisions
Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae
Early phase optical spectra of aspherical jet-like supernovae (SNe) are
presented. We focus on energetic core-collapse SNe, or hypernovae. Based on
hydrodynamic and nucleosynthetic models, radiative transfer in SN atmosphere is
solved with a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI.
Since the luminosity is boosted in the jet direction, the temperature there is
higher than in the equatorial plane by ~ 2,000 K. This causes anisotropic
ionization in the ejecta. Emergent spectra are different depending on viewing
angle, reflecting both aspherical abundance distribution and anisotropic
ionization. Spectra computed with an aspherical explosion model with kinetic
energy 20 x 10^{51} ergs are compatible with those of the Type Ic SN 1998bw if
~ 10-20% of the synthesized metals are mixed out to higher velocities. The
simulations enable us to predict the properties of off-axis hypernovae. Even if
an aspherical hypernova explosion is observed from the side, it should show
hypernova-like spectra but with some differences in the line velocity, the
width of the Fe absorptions and the strength of the Na I line.Comment: 4 pages, 4 figures. Accepted for publication in The Astrophysical
Journal Letter
Nebular Spectra of SN 1998bw Revisited: Detailed Study by One and Two Dimensional Models
Refined one- and two-dimensional models for the nebular spectra of the
hyper-energetic Type Ic supernova (SN) 1998bw, associated with the gamma-ray
burst GRB980425, from 125 to 376 days after B-band maximum are presented. One
dimensional, spherically symmetric spectrum synthesis calculations show that
reproducing features in the observed spectra, i.e., the sharply peaked [OI]
6300\AA doublet and MgI] 4570\AA emission, and the broad [FeII] blend around
5200\AA, requires the existence of a high-density O-rich core expanding at low
velocities (\lsim 8,000 km s) and of Fe-rich material moving faster
than the O-rich material. Synthetic spectra at late phases from aspherical
(bipolar) explosion models are also computed with a two-dimensional spectrum
synthesis code. The above features are naturally explained by the aspherical
model if the explosion is viewed from a direction close to the axis of symmetry
(), since the aspherical model yields a high-density O-rich
region confined along the equatorial axis. By examining a large parameter space
(in energy and mass), our best model gives following physical quantities: the
kinetic energy ergs \gsim 8 - 12 and the
main-sequence mass of the progenitor star M_{\rm ms} \gsim 30 - 35 \Msun. The
temporal spectral evolution of SN 1998bw also indicates mixing among Fe-, O-,
and C-rich regions, and highly clumpy structure.Comment: 38 pages, 22 figures. ApJ, 640 (01 April 2006 issue), in pres
Final Evolution and Delayed Explosions of Spinning White Dwarfs in Single Degenerate Models for Type Ia Supernovae
We study the occurrence of delayed SNe~Ia in the single degenerate (SD)
scenario. We assume that a massive carbon-oxygen (CO) white dwarf (WD) accretes
matter coming from a companion star, making it to spin at the critical rate. We
assume uniform rotation due to magnetic field coupling. The carbon ignition
mass for non-rotating WDs is M_{ig}^{NR} \approx 1.38 M_{\odot}; while for the
case of uniformly rotating WDs it is a few percent larger (M_{ig}^{R} \approx
1.43 M_{\odot}). When accretion rate decreases, the WD begins to lose angular
momentum, shrinks, and spins up; however, it does not overflow its critical
rotation rate, avoiding mass shedding. Thus, angular momentum losses can lead
the CO WD interior to compression and carbon ignition, which would induce an
SN~Ia. The delay, largely due to the angular momentum losses timescale, may be
large enough to allow the companion star to evolve to a He WD, becoming
undetectable at the moment of explosion. This scenario supports the occurrence
of delayed SNe~Ia if the final CO WD mass is 1.38 M_{\odot} < M < 1.43
M_{\odot}. We also find that if the delay is longer than ~3 Gyr, the WD would
become too cold to explode, rather undergoing collapse.Comment: 6 pages, 5 figures, published in the Astrophysical Journal Letters,
809, L6 (2015), added some corrections for errat
On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329
The net optical light curves and spectra of the supernova (SN) 2003dh are
obtained from the published spectra of GRB 030329, covering about 6 days before
SN maximum to about 60 days after. The bulk of the U-band flux is subtracted
from the observed spectra using early-time afterglow templates, because strong
line blanketing greatly depresses the UV and U-band SN flux in a metal-rich,
fast-moving SN atmosphere. The blue-end spectra of the gamma-ray burst
(GRB)connected hypernova SN 1998bw is used to determine the amount of
subtraction. The subtraction of a host galaxy template affects the late-time
results. The derived SN 2003dh light curves are narrower than those of SN
1998bw, rising as fast before maximum, reaching a possibly fainter maximum, and
then declining ~ 1.2-1.4 times faster. We then build UVOIR bolometric SN light
curve. Allowing for uncertainties, it can be reproduced with a spherical ejecta
model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following
previous spectrum modelling, and M(Ni56) ~ (0.4 +0.15/-0.1) Msun. This suggests
a progenitor main-sequence mass of about 25-40 Msun, lower than SN 1998bw but
significantly higher than normal Type Ic SNe and the GRB-unrelated hypernova SN
2002ap.Comment: 18 pages, 7 figures, published by Ap
- …