187 research outputs found
A global perspective on marine photosynthetic picoeukaryote community structure
A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change
Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing
Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
Solving Phase Retrieval with a Learned Reference
Fourier phase retrieval is a classical problem that deals with the recovery
of an image from the amplitude measurements of its Fourier coefficients.
Conventional methods solve this problem via iterative (alternating)
minimization by leveraging some prior knowledge about the structure of the
unknown image. The inherent ambiguities about shift and flip in the Fourier
measurements make this problem especially difficult; and most of the existing
methods use several random restarts with different permutations. In this paper,
we assume that a known (learned) reference is added to the signal before
capturing the Fourier amplitude measurements. Our method is inspired by the
principle of adding a reference signal in holography. To recover the signal, we
implement an iterative phase retrieval method as an unrolled network. Then we
use back propagation to learn the reference that provides us the best
reconstruction for a fixed number of phase retrieval iterations. We performed a
number of simulations on a variety of datasets under different conditions and
found that our proposed method for phase retrieval via unrolled network and
learned reference provides near-perfect recovery at fixed (small) computational
cost. We compared our method with standard Fourier phase retrieval methods and
observed significant performance enhancement using the learned reference.Comment: Accepted to ECCV 2020. Code is available at
https://github.com/CSIPlab/learnPR_referenc
Infant mortality trends in a region of Belarus, 1980–2000
BACKGROUND: The Chernobyl disaster in 1986 and the breakup of the former Soviet Union (FSU) in 1991 challenged the public health infrastructure in the former Soviet republic of Belarus. Because infant mortality is regarded as a sensitive measure of the overall health of a population, patterns of neonatal and postneonatal deaths were examined within the Mogilev region of Belarus between 1980 and 2000. METHODS: Employing administrative death files, this study utilized a regional cohort design that included all infant deaths occurring among persons residing within the Mogilev oblast of Belarus between 1980 and 2000. Patterns of death and death rates were examined across 3 intervals: 1980–1985 (pre-Chernobyl), 1986–1991 (post-Chernobyl & pre-FSU breakup), and 1992–2000 (post-Chernobyl & post-FSU breakup). RESULTS: Annual infant mortality rates declined during the 1980s, increased during the early 1990s, and have remained stable thereafter. While infant mortality rates in Mogilev have decreased since the period 1980–1985 among both males and females, this decrement appears due to decreases in postneonatal mortality. Rates of postneonatal mortality in Mogilev have decreased since the period 1980–1985 among both males and females. Analyses of trends for infant mortality and neonatal mortality demonstrated continuous decreases between 1990, followed by a bell-shaped excess in the 1990's. Compared to rates of infant mortality for other countries, rates in the Mogilev region are generally higher than rates for the United States, but lower than rates in Russia. During the 1990s, rates for both neonatal and postneonatal mortality in Mogilev were two times the comparable rates for East and West Germany. CONCLUSIONS: While neonatal mortality rates in Mogilev have remained stable, rates for postneonatal mortality have decreased among both males and females during the period examined. Infant mortality rates in the Mogilev region of Belarus remain elevated compared to rates for other western countries, but lower than rates in Russia. The public health infrastructure might attempt to assure that prenatal, maternal, and postnatal care is maximized
Generation of tumour-specific cytotoxic T-cell clones from histocompatibility leucocyte antigen-identical siblings of patients with melanoma
Lymphodepletion and infusion of autologous expanded tumour-infiltrating lymphocytes is effective therapy for patients with malignant melanoma. Antitumour responses are likely to be mediated by HLA class I- and II-restricted immune responses directed at tumour antigens. We assessed whether the peripheral blood of normal HLA-matched siblings of patients with melanoma could be used to generate lymphocytes with antimelanoma activity for adoptive immunotherapy after allogeneic blood or marrow transplantation. Melanoma cell lines were derived from two donors and were used to stimulate the mononuclear cells of three HLA-identical siblings. CD4+ clones dominated cultures. Of these, approximately half were directly cytotoxic towards recipient melanoma cells and secreted interferon-γ in response to tumour stimulation. More than half of the noncytotoxic clones also secreted interferon-γ after melanoma stimulation. No CD4+ clones responded to stimulation with recipient haemopoietic cells. The majority of CD8+ clones directly lysed recipient melanoma, but did not persist in long-term culture in vitro. No crossreactivity with recipient haemopoietic cells was observed. The antigenic target of one CD4+ clone was determined to be an HLA-DR11-restricted MAGE-3 epitope. Antigenic targets of the remaining clones were not elucidated, but appeared to be restricted through a non-HLA-DR class II molecule. We conclude that the blood of allogeneic HLA-matched sibling donors contains melanoma-reactive lymphocyte precursors directed at tumour-associated antigens. Adoptive immunotherapy with unselected or ex vivo-stimulated donor lymphocytes after allogeneic stem cell transplantation has a rational basis for the treatment of malignant melanoma
Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres
Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration
The Connectome Visualization Utility: Software for Visualization of Human Brain Networks
In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats
Comparing population health in the United States and Canada
<p>Abstract</p> <p>Background</p> <p>The objective of the paper is to compare population health in the United States (US) and Canada. Although the two countries are very similar in many ways, there are potentially important differences in the levels of social and economic inequality and the organization and financing of and access to health care in the two countries.</p> <p>Methods</p> <p>Data are from the Joint Canada/United States Survey of Health 2002/03. The Health Utilities Index Mark 3 (HUI3) was used to measure overall health-related quality of life (HRQL). Mean HUI3 scores were compared, adjusting for major determinants of health, including body mass index, smoking, education, gender, race, and income. In addition, estimates of life expectancy were compared. Finally, mean HUI3 scores by age and gender and Canadian and US life tables were used to estimate health-adjusted life expectancy (HALE).</p> <p>Results</p> <p>Life expectancy in Canada is higher than in the US. For those < 40 years, there were no differences in HRQL between the US and Canada. For the 40+ group, HRQL appears to be higher in Canada. The results comparing the white-only population in both countries were very similar. For a 19-year-old, HALE was 52.0 years in Canada and 49.3 in the US.</p> <p>Conclusions</p> <p>The population of Canada appears to be substantially healthier than the US population with respect to life expectancy, HRQL, and HALE. Factors that account for the difference may include access to health care over the full life span (universal health insurance) and lower levels of social and economic inequality, especially among the elderly.</p
- …