399 research outputs found

    Reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers

    Full text link
    We studied the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state establishing due to the proximity effect in superconducting Nb/Cu41Ni59 bilayers. Using a special wedge-type deposition technique, series of 20-35 samples could be fabricated by magnetron sputtering during one run. The layer thickness of only a few nanometers, the composition of the alloy, and the quality of interfaces were controlled by Rutherford backscattering spectrometry, high resolution transmission electron microscopy, and Auger spectroscopy. The magnetic properties of the ferromagnetic alloy layer were characterized with superconducting quantum interference device (SQUID) magnetometry. These studies yield precise information about the thickness, and demonstrate the homogeneity of the alloy composition and magnetic properties along the sample series. The dependencies of the critical temperature on the Nb and Cu41Ni59 layer thickness, Tc(dS) and Tc(dF), were investigated for constant thickness dF of the magnetic alloy layer and dS of the superconducting layer, respectively. All types of non-monotonic behaviors of Tc versus dF predicted by the theory could be realized experimentally: from reentrant superconducting behavior with a broad extinction region to a slight suppression of superconductivity with a shallow minimum. Even a double extinction of superconductivity was observed, giving evidence for the multiple reentrant behavior predicted by theory. All critical temperature curves were fitted with suitable sets of parameters. Then, Tc(dF) diagrams of a hypothetical F/S/F spin-switch core structure were calculated using these parameters. Finally, superconducting spin-switch fabrication issues are discussed in detail in view of the achieved results.Comment: 34 pages, 9 figure

    The pressure tensor across a liquid-vapour interface

    Get PDF
    © 2018, The Authors. Inhomogeneous fluids exhibit physical properties that are neither uniform nor isotropic. The pressure tensor is a case in point, key to the mechanical description of the interfacial region. Kirkwood and Buff and, later, Irving and Kirkwood, obtained a formal treatment based on the analysis of the pressure across a planar surface [J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17(3), 338 (1949); J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950)]. We propose a generalisation of Irving and Kirkwood’s argument to fluctuating, non-planar surfaces and obtain an expression for the pressure tensor that is not smeared by thermal fluctuations at the molecular scale and corresponding capillary waves [F. P. Buff et al., Phys. Rev. Lett. 15, 621–623 (1965)]. We observe the emergence of surface tension, defined as an excess tangential stress, acting exactly across the dividing surface at the sharpest molecular resolution. The new statistical mechanical expressions extend current treatments to fluctuating inhomogeneous systems far from equilibrium.European Research Council (ERC) Advanced Grant No. 247031; Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/L020564

    Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat

    Full text link
    Cyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low‐O 2 conditions. Here, venting groundwater rich in sulfate and low in O 2 supports a unique benthic ecosystem of purple‐colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O 2 , suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, 14 C‐bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low‐diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale , for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria . Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low‐O 2 cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90535/1/j.1472-4669.2012.00322.x.pd

    Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solidliquid interfaces

    Get PDF
    We investigate the hydrodynamic properties of a Lennard-Jones fluid confined to a nanochannel using molecular dynamics simulations. For channels of different widths and hydrophilic-hydrophobic surface wetting properties, profiles of the fluid density, stress, and viscosity across the channel are obtained and analysed. In particular, we propose a linear relationship between the density and viscosity in confined and strongly inhomogeneous nanofluidic flows. The range of validity of this relationship is explored in the context of coarse grained models such as dynamic density functional-theory

    A biophysical model of prokaryotic diversity in geothermal hot springs

    Full text link
    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. Further, we present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed diversity of different strains of the photosynthetic bacteria. It also reproduces the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms

    Analysis of different characteristics of smile

    Get PDF
    Introduction: Analysis of smile is imperative in the diagnosis and treatment planning phases of aesthetic dentistry.Aim: To evaluate the components of smile among students of a dental institution.Methods: Frontal view digital photographs with posed smile of 157 dental students were assessed using Adobe Photoshop7.0. Smile characteristics evaluated included; smile line, smile arc, smile design, upper lip curvature, labiodental relationship and number of teeth displayed. Data were analyzed using SPSS version 23.0. Pearson chi-square test was used to determine the gender based differences for various parameters.Results: Average smile line (43.3%), consonant smile arcs (45.2%), cuspid smiles (45.9%), upward lip curvature (43.9%), maxillary anterior teeth not covered by lower lip (60.5%) and teeth displayed up to first premolars (35.7%). Gender based differences were not statistically significant except for smile arc (p value = 0.02) and number of teeth displayed (p value \u3c 0.001). There was a significant relationship between lip curvature and smile pattern (p value \u3c 0.001) and lip curvature and smile arc (p value = 0.01) revealing that upward lip curvature was associated with commissure type smiles and consonant smile arcs.Conclusions: The smile characteristics should be considered before beginning the aesthetic treatment of the patient to obtain adequate results in oral rehabilitation

    ECSA's Characteristics of Citizen Science: Explanation Notes

    Get PDF
    This explanation document provides an interpretation of and explanation for the characteristics document, which was kept short to make it useful to different stakeholders. In this document, the characteristics document is represented, with the original text in blue and an explanation in black

    Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4.

    Get PDF
    The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy must alter immunological mechanisms at this interface to protect the conceptus. We sought to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells (HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan (PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18 hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent with the functional complexity that this mucosal interface requires for its immunological roles

    Recent progress towards a physics-based understanding of the H-mode transition

    Get PDF
    Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. The drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. These results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator-prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode
    corecore