6,995 research outputs found
Dynamics and stability of wind turbine generators
Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered
Spectral determinations for discrete sources with EGRET
The ability of the EGRET (Energetic Gamma-Ray Experimental Telescope) to determine the spectral parameters of point sources in 14-day exposures, as planned for the initial survey phase of the GRO (Gamma Ray Observatory) mission, is explored by numerical simulation. Results are given for both galactic and extragalactic objects as a function of source strength and for representative levels of diffuse background emission
Compression of Martian atmosphere for production of oxygen
The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work
A note on behaviour at an isotropic singularity
The behaviour of Jacobi fields along a time-like geodesic running into an
isotropic singularity is studied. It is shown that the Jacobi fields are
crushed to zero length at a rate which is the same in every direction
orthogonal to the geodesic. We show by means of a counter-example that this
crushing effect depends crucially on a technicality of the definition of
isotropic singularities, and not just on the uniform degeneracy of the metric
at the singularity.Comment: 13 pp. plain latex. To appear in Classical and Quantum Gravit
Microquasar models for 3EG J1828+0142 and 3EG J1735-1500
Microquasars are promising candidates to emit high-energy gamma-rays.
Moreover, statistical studies show that variable EGRET sources at low galactic
latitudes could be associated with the inner spiral arms. The variable nature
and the location in the Galaxy of the high-mass microquasars, concentrated in
the galactic plane and within 55 degrees from the galactic center, give to
these objects the status of likely counterparts of the variable low-latitude
EGRET sources. We consider in this work the two most variable EGRET sources at
low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model
to explain the EGRET data in consistency with the observations at lower
energies (from radio frequencies to soft gamma-rays) within the EGRET error
box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de
Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas
(4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a
poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for
publication in the Chinese Journal of Astronomy & Astrophysic
Physical characterization and origin of binary near-Earth asteroid (175706) 1996 FG3
The near-Earth asteroid (NEA) (175706) 1996 FG3 is a particularly interesting
spacecraft target: a binary asteroid with a low-DeltaV heliocentric orbit. The
orbit of its satellite has provided valuable information about its mass density
while its albedo and colors suggest it is primitive or part of the C-complex
taxonomic grouping. We extend the physical characterization of this object with
new observations of its emission at mid-Infrared (IR) wavelengths and with
near-IR reflection spectroscopy. We derive an area-equivalent system diameter
of 1.90 \pm 0.28 km (corresponding to approximate component diameters of 1.83
km and 0.51 km, respectively) and a geometric albedo of 0.039 \pm 0.012.
1996 FG3 was previously classified as a C-type asteroid, though the combined
0.4--2.5 micron spectrum with thermal correction indicates classification as
B-type; both are consistent with the low measured albedo. Dynamical studies
show that 1996 FG3 has most probably originated in the inner main asteroid
belt. Recent work has suggested the inner Main Belt (142) Polana family as the
possible origin of another low-DeltaV B-type NEA, (101955) 1999 RQ36. A similar
origin for 1996 FG3 would require delivery by the overlapping Jupiter 7:2 and
Mars 5:9 mean motion resonances rather than the nu-6 resonance, and we find
this to be a low probability, but possible, origin.Comment: Published in Ap
Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject
Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR
On the existence of dyons and dyonic black holes in Einstein-Yang-Mills theory
We study dyonic soliton and black hole solutions of the
Einstein-Yang-Mills equations in asymptotically anti-de Sitter space. We prove
the existence of non-trivial dyonic soliton and black hole solutions in a
neighbourhood of the trivial solution. For these solutions the magnetic gauge
field function has no zeros and we conjecture that at least some of these
non-trivial solutions will be stable. The global existence proof uses local
existence results and a non-linear perturbation argument based on the (Banach
space) implicit function theorem.Comment: 23 pages, 2 figures. Minor revisions; references adde
- …