58 research outputs found

    Energy applications of ionic liquids

    Get PDF
    Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities

    Achievement of Room Temperature Superelasticity in Ti-Mo-Al Alloy System via Manipulation of ω Phase Stability

    No full text
    The achievement of room-temperature (RT) superelasticity in a Ti-Mo-Al ternary alloy system through the addition of a relatively high concentration of Al to manipulate the phase stability of the ω phase is realized in this study. The composition of the Ti-6 mol% Mo (Ti-11.34 mass% Mo) alloy was designated as the starting alloy, while 5 mol% Al (=2.71 mass% Al) and 10 mol% Al (=5.54 mass% Al) were introduced to promote their superelastic behavior. Among the alloys, Ti-6 mol% Mo-10 mol% Al alloy, which was investigated for the very first time in this work, performed the best in terms of superelasticity. On the other hand, Ti-6 mol% Mo and Ti-6 mol% Mo-5 mol% Al alloys exhibited a shape memory effect upon heating. It is worth mentioning that in the transmission electron microscopy observation, ω phase, which appeared along with β-parent phase, was significantly suppressed as Al concentration was elevated up to 10 mol%. Therefore, the conventional difficulties of the inhibited RT superelasticity were successfully revealed by regulating the number density of the ω phase below a threshold

    Ti-Mo-Al形状記憶合金のマルテンサイト時効効果

    No full text
    identifier:oai:t2r2.star.titech.ac.jp:5068228

    Achievement of Room Temperature Superelasticity in Ti-Mo-Al Alloy System via Manipulation of ω Phase Stability

    No full text
    The achievement of room-temperature (RT) superelasticity in a Ti-Mo-Al ternary alloy system through the addition of a relatively high concentration of Al to manipulate the phase stability of the ω phase is realized in this study. The composition of the Ti-6 mol% Mo (Ti-11.34 mass% Mo) alloy was designated as the starting alloy, while 5 mol% Al (=2.71 mass% Al) and 10 mol% Al (=5.54 mass% Al) were introduced to promote their superelastic behavior. Among the alloys, Ti-6 mol% Mo-10 mol% Al alloy, which was investigated for the very first time in this work, performed the best in terms of superelasticity. On the other hand, Ti-6 mol% Mo and Ti-6 mol% Mo-5 mol% Al alloys exhibited a shape memory effect upon heating. It is worth mentioning that in the transmission electron microscopy observation, ω phase, which appeared along with β-parent phase, was significantly suppressed as Al concentration was elevated up to 10 mol%. Therefore, the conventional difficulties of the inhibited RT superelasticity were successfully revealed by regulating the number density of the ω phase below a threshold

    Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells

    No full text
    Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10–30 μM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 μM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10–30 μM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.ArticleBiomedicines 10(11) : 2691-(2022)journal articl
    corecore