7,619 research outputs found

    Reversibility of Red blood Cell deformation

    Full text link
    The ability of cells to undergo reversible shape changes is often crucial to their survival. For Red Blood Cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of micrometer dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar "pearling instability".Comment: 4 pages, 3 figure

    Dynamical regimes and hydrodynamic lift of viscous vesicles under shear

    Get PDF
    The dynamics of two-dimensional viscous vesicles in shear flow, with different fluid viscosities ηin\eta_{\rm in} and ηout\eta_{\rm out} inside and outside, respectively, is studied using mesoscale simulation techniques. Besides the well-known tank-treading and tumbling motions, an oscillatory swinging motion is observed in the simulations for large shear rate. The existence of this swinging motion requires the excitation of higher-order undulation modes (beyond elliptical deformations) in two dimensions. Keller-Skalak theory is extended to deformable two-dimensional vesicles, such that a dynamical phase diagram can be predicted for the reduced shear rate and the viscosity contrast ηin/ηout\eta_{\rm in}/\eta_{\rm out}. The simulation results are found to be in good agreement with the theoretical predictions, when thermal fluctuations are incorporated in the theory. Moreover, the hydrodynamic lift force, acting on vesicles under shear close to a wall, is determined from simulations for various viscosity contrasts. For comparison, the lift force is calculated numerically in the absence of thermal fluctuations using the boundary-integral method for equal inside and outside viscosities. Both methods show that the dependence of the lift force on the distance ycmy_{\rm {cm}} of the vesicle center of mass from the wall is well described by an effective power law ycm2y_{\rm {cm}}^{-2} for intermediate distances 0.8Rpycm3Rp0.8 R_{\rm p} \lesssim y_{\rm {cm}} \lesssim 3 R_{\rm p} with vesicle radius RpR_{\rm p}. The boundary-integral calculation indicates that the lift force decays asymptotically as 1/[ycmln(ycm)]1/[y_{\rm {cm}}\ln(y_{\rm {cm}})] far from the wall.Comment: 13 pages, 13 figure

    Solvent-free coarse-grained lipid model for large-scale simulations

    Full text link
    A coarse-grained molecular model, which consists of a spherical particle and an orientation vector, is proposed to simulate lipid membrane on a large length scale. The solvent is implicitly represented by an effective attractive interaction between particles. A bilayer structure is formed by orientation-dependent (tilt and bending) potentials. In this model, the membrane properties (bending rigidity, line tension of membrane edge, area compression modulus, lateral diffusion coefficient, and flip-flop rate) can be varied over broad ranges. The stability of the bilayer membrane is investigated via droplet-vesicle transition. The rupture of the bilayer and worm-like micelle formation can be induced by an increase in the spontaneous curvature of the monolayer membrane.Comment: 13 pages, 19 figure

    Dynamic Modes of Microcapsules in Steady Shear Flow: Effects of Bending and Shear Elasticities

    Full text link
    The dynamics of microcapsules in steady shear flow was studied using a theoretical approach based on three variables: The Taylor deformation parameter αD\alpha_{\rm D}, the inclination angle θ\theta, and the phase angle ϕ\phi of the membrane rotation. It is found that the dynamic phase diagram shows a remarkable change with an increase in the ratio of the membrane shear and bending elasticities. A fluid vesicle (no shear elasticity) exhibits three dynamic modes: (i) Tank-treading (TT) at low viscosity ηin\eta_{\rm {in}} of internal fluid (αD\alpha_{\rm D} and θ\theta relaxes to constant values), (ii) Tumbling (TB) at high ηin\eta_{\rm {in}} (θ\theta rotates), and (iii) Swinging (SW) at middle ηin\eta_{\rm {in}} and high shear rate γ˙\dot\gamma (θ\theta oscillates). All of three modes are accompanied by a membrane (ϕ\phi) rotation. For microcapsules with low shear elasticity, the TB phase with no ϕ\phi rotation and the coexistence phase of SW and TB motions are induced by the energy barrier of ϕ\phi rotation. Synchronization of ϕ\phi rotation with TB rotation or SW oscillation occurs with integer ratios of rotational frequencies. At high shear elasticity, where a saddle point in the energy potential disappears, intermediate phases vanish, and either ϕ\phi or θ\theta rotation occurs. This phase behavior agrees with recent simulation results of microcapsules with low bending elasticity.Comment: 11 pages, 14 figure

    A Constant Bar Fraction out to Redshift z~1 in the Advanced Camera for Surveys Field of the Tadpole Galaxy

    Full text link
    Bar-like structures were investigated in a sample of 186 disk galaxies larger than 0.5 arcsec that are in the I-band image of the Tadpole galaxy taken with the HST ACS. We found 22 clear cases of barred galaxies, 21 galaxies with small bars that appear primarily as isophotal twists in a contour plot, and 11 cases of peculiar bars in clump-cluster galaxies, which are face-on versions of chain galaxies. The latter bars are probably young, as the galaxies contain only weak interclump emission. Four of the clearly barred galaxies at z~0.8-1.2 have grand design spirals. The bar fraction was determined as a function of galaxy inclination and compared with the analogous distribution in the local Universe. The bar fraction was also determined as a function of galaxy angular size. These distributions suggest that inclination and resolution effects obscure nearly half of the bars in our sample. The bar fraction was also determined as a function of redshift. We found a nearly constant bar fraction of 0.23+-0.03 from z~0 to z=1.1. When corrected for inclination and size effects, this fraction is comparable to the bar fraction in the local Universe, ~0.4, as tabulated for all bar and Hubble types in the Third Reference Catalogue of Galaxies. The average major axis of a barred galaxy in our sample is ~10 kpc after correcting for redshift with a LambdaCDM cosmology. Galaxy bars were present in normal abundance at least ~8 Gy ago (z~1); bar dissolution cannot be common during a Hubble time unless the bar formation rate is comparable to the dissolution rate.Comment: to appear in ApJ, Sept 1, 2004, Vol 612, 18 pg, 12 figure

    The Advantage of Increased Resolution in the Study of Quasar Absorption Systems

    Get PDF
    We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V = 14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902 and the multiple cloud, weak MgII system at z = 1.0414, we find that at the higher resolution, additional components are resolved in a blended profile. We find that two single-cloud weak MgII absorbers were already resolved at R = 45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R = 120, 000 spectrum is a component of the Galactic NaI absorption, with b = 0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various applications, including studies of DLAs, the MgI phases of strong MgII absorbers, and high velocity clouds. By applying Voigt profile fitting to synthetic lines, we compare the consistency with which line profile parameters can be accurately recovered at R = 45,000 and R = 120,000. We estimate the improvement gained from superhigh resolution in resolving narrowly separated velocity components in absorption profiles. We also explore the influence of isotope line shifts and hyperfine splitting in measurements of line profile parameters, and the spectral resolution needed to identify these effects. Super high resolution spectra of quasars, which will be routinely possible with 20-meter class telescopes, will lead to greater sensitivity for absorption line surveys, and to determination of more accurate physical conditions for cold phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at http://www.astro.psu.edu/users/anand/superhigh.AJ.pd

    Kinematic Effects of Tidal Interaction on Galaxy Rotation Curves

    Get PDF
    We use self-consistent N-body models, in conjunction with models of test particles moving in galaxy potentials, to explore the initial effects of interactions on the rotation curves of spiral galaxies. Using nearly self-consistent disk/bulge/halo galaxy models (Kuijken & Dubinski 1995), we simulate the first pass of galaxies on nearly parabolic orbits; we vary orbit inclinations, galaxy halo masses and impact parameters. For each simulation, we mimic observed rotation curves of the model galaxies. Transient interaction-induced features of the curves include distinctly rising or falling profiles at large radii and pronounced bumps in the central regions. Remarkably similar features occur in our statistical sample of optical emission-line rotation curves of spiral galaxies in tight pairs and n-tuples.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter

    Dynamics of Fluid Vesicles in Oscillatory Shear Flow

    Full text link
    The dynamics of fluid vesicles in oscillatory shear flow was studied using differential equations of two variables: the Taylor deformation parameter and inclination angle θ\theta. In a steady shear flow with a low viscosity ηin\eta_{\rm {in}} of internal fluid, the vesicles exhibit steady tank-treading motion with a constant inclination angle θ0\theta_0. In the oscillatory flow with a low shear frequency, θ\theta oscillates between ±θ0\pm \theta_0 or around θ0\theta_0 for zero or finite mean shear rate γ˙m\dot\gamma_{\rm m}, respectively. As shear frequency fγf_{\gamma} increases, the vesicle oscillation becomes delayed with respect to the shear oscillation, and the oscillation amplitude decreases. At high fγf_{\gamma} with γ˙m=0\dot\gamma_{\rm m}=0, another limit-cycle oscillation between θ0π\theta_0-\pi and θ0-\theta_0 is found to appear. In the steady flow, θ\theta periodically rotates (tumbling) at high ηin\eta_{\rm {in}}, and θ\theta and the vesicle shape oscillate (swinging) at middle ηin\eta_{\rm {in}} and high shear rate. In the oscillatory flow, the coexistence of two or more limit-cycle oscillations can occur for low fγf_{\gamma} in these phases. For the vesicle with a fixed shape, the angle θ\theta rotates back to the original position after an oscillation period. However, it is found that a preferred angle can be induced by small thermal fluctuations.Comment: 11 pages, 13 figure

    The regeneration of stellar bars by tidal interactions. Numerical simulations of fly-by encounters

    Full text link
    We study the regeneration of stellar bars triggered by a tidal interaction, using numerical simulations of either purely stellar or stellar+gas disc galaxies. We find that interactions which are sufficiently strong to regenerate the bar in the purely stellar models do not lead to a regeneration in the dissipative models, owing to the induced gas inflow in those models. In models in which the bar can be regenerated, we find a tight correlation between the strength and the pattern speed of the induced bar. This relation can be explained by a significant radial redistribution of angular momentum in the disc due to the interaction, similar to the processes and correlations found for isolated barred spirals. We furthermore show that the regenerated bars show the same dynamical properties as their isolated counterparts.Comment: 18 pages, 26 figures, accepted for publication in MNRA

    Thermodynamic Properties of HFC-32/HFC-134a Binary System

    Get PDF
    corecore