We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V =
14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum
obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902
and the multiple cloud, weak MgII system at z = 1.0414, we find that at the
higher resolution, additional components are resolved in a blended profile. We
find that two single-cloud weak MgII absorbers were already resolved at R =
45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R =
120, 000 spectrum is a component of the Galactic NaI absorption, with b =
0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various
applications, including studies of DLAs, the MgI phases of strong MgII
absorbers, and high velocity clouds. By applying Voigt profile fitting to
synthetic lines, we compare the consistency with which line profile parameters
can be accurately recovered at R = 45,000 and R = 120,000. We estimate the
improvement gained from superhigh resolution in resolving narrowly separated
velocity components in absorption profiles. We also explore the influence of
isotope line shifts and hyperfine splitting in measurements of line profile
parameters, and the spectral resolution needed to identify these effects. Super
high resolution spectra of quasars, which will be routinely possible with
20-meter class telescopes, will lead to greater sensitivity for absorption line
surveys, and to determination of more accurate physical conditions for cold
phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at
http://www.astro.psu.edu/users/anand/superhigh.AJ.pd