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The dynamics of two-dimensional viscous vesicles in shear flow, with different fluid viscosities �in and �out

inside and outside, respectively, is studied using mesoscale simulation techniques. Besides the well-known
tank-treading and tumbling motions, an oscillatory swinging motion is observed in the simulations for large
shear rate. The existence of this swinging motion requires the excitation of higher-order undulation modes
�beyond elliptical deformations� in two dimensions. Keller-Skalak theory is extended to deformable two-
dimensional vesicles, such that a dynamical phase diagram can be predicted for the reduced shear rate and the
viscosity contrast �in /�out. The simulation results are found to be in good agreement with the theoretical
predictions, when thermal fluctuations are incorporated in the theory. Moreover, the hydrodynamic lift force,
acting on vesicles under shear close to a wall, is determined from simulations for various viscosity contrasts.
For comparison, the lift force is calculated numerically in the absence of thermal fluctuations using the
boundary-integral method for equal inside and outside viscosities. Both methods show that the dependence of
the lift force on the distance ycm of the vesicle center of mass from the wall is well described by an effective
power law ycm

−2 for intermediate distances 0.8Rp�ycm�3Rp with vesicle radius Rp. The boundary-integral
calculation indicates that the lift force decays asymptotically as 1 / �ycm ln�ycm�� far from the wall.

DOI: 10.1103/PhysRevE.80.011901 PACS number�s�: 87.16.D�, 82.70.�y, 47.15.G�

I. INTRODUCTION

Vesicles are fluid droplets enclosed by a fluid lipid mem-
brane. Typically, vesicles have sizes of the order of 10 nm to
10 �m, whereas the thickness of the membrane is only of
the order of a nanometer. Therefore, the membrane can often
be regarded as a two-dimensional �2D� manifold. Vesicle
shapes and fluctuations are then governed by the curvature
elasticity. This description has been very successful to ex-
plain vesicles behavior in thermal equilibrium �1�.

The dynamics of fluid vesicles in shear flow has attracted
much attention recently �2–18�. Aspherical vesicles under
shear can be found in different dynamical phases, depending
on the viscosities �in and �out of inner and outer fluids, re-
spectively, the membrane viscosity �mb, the bending rigidity
�, the shear rate �̇, the membrane area, and enclosed volume.
As long as shape relaxation times of the vesicle are small
compared to the time scale set by the shear rate �̇, the vesicle
is always close to its equilibrium shape. Under these condi-
tions, vesicles can be found either in tank-treading �TT� mo-
tion, or—if the viscosity contrast �=�in /�out exceeds a criti-
cal value—in a tumbling �TB� motion. In the tank-treading
regime, the vesicle shape and orientation are stationary in
time, but the membrane rotates around the vesicle’s center of
mass in the same direction as the rotational part of the shear
flow. Here, the orientation is characterized by the inclination
angle � with respect to the flow direction. In the tumbling
regime, the long axis of the vesicle performs a periodic ro-
tation. Keller and Skalak �2� developed a theory for fluid
vesicles with fixed ellipsoidal shape and different viscosity
contrasts, which is able to explain the observed experiments.
In recent years, computer simulations �3–7� have shown that
the Keller-Skalak �KS� theory provides indeed a very good
description of tank treading and tumbling.

However, the vesicle dynamics is far less understood
when the shear rate is large enough that the vesicle cannot
relax into its equilibrium shape. Only recently, it was shown
that a third dynamical regime can appear under these condi-
tions, the swinging �SW� regime �11–18�—also called the
trembling �11� or vacillating-breathing regime �13�. In the
swinging state, oscillations of shape and inclination angle
together determine the vesicle dynamics. Swinging vesicles
were first observed experimentally in Ref. �11�. With increas-
ing shear rate, a transition from tumbling to swinging motion
was found. A perturbation theory for quasispherical vesicles
to lowest order in the deviation from the spherical shape
predicted swinging for a range of viscosity contrasts �13�;
however, since the shear rate appears only as basic �inverse�
time scale in this approach, the experimental results could
not be explained. Therefore, higher-order expansions for
quasispherical vesicles �16–18� and a generalized KS theory
for ellipsoidal vesicles �15� have been developed, which are
able to predict phase transitions with varying shear rate and
thereby to explain the experiments of Ref. �11�.

The dynamics in the TT, TB, and SW phases has been
studied mainly for single vesicles in an unbounded fluid.
However, in particular due to its physiological importance, it
is of high interest to study the dynamical behavior of vesicles
under shear in the presence of walls. In this case, vesicles are
repelled from a wall due to a hydrodynamic lift force FL. The
hydrodynamic lift force plays an important role in circula-
tory systems of vertebrates. Since the lift force pushes red
blood cells to the center of a blood vessel, where the flow
velocity is largest, it increases the efficiency of oxygen trans-
port. On the other hand, white blood cells move along the
vessel walls in order to find defects in the vascular endothe-
lium �19,20�. This is achieved by special ligands, which are
located at the outside of white blood cells and bind to recep-
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tors on the vessel wall to resist the hydrodynamic lift force
�21,22�.

The existence of a hydrodynamic lift force was first re-
ported by Poiseuille in 1836 �23�, who observed this effect
on blood cells. In recent years, the hydrodynamic lift force
was studied intensively, both theoretically �24–28� and ex-
perimentally �29–32�. Abkarian et al. �30,31� observed the
unbinding of a heavy vesicle, which was pulled by gravity
toward a wall, with increasing shear rate. For vesicles which
are not in direct contact with the wall, only studies in three
dimensions with equal viscosities of inside and outside fluids
exist. Both, boundary-integral simulations �28� as well as
theoretical studies �24,25� show that the lift force decays
with a power law 1 /ycm

2 with increasing distance between the
vesicle’s center of mass and the wall. For vesicles in two
dimensions, there are only theoretical and numerical studies
which focus on adhering vesicles bound to the wall by a
short-ranged attractive potential �26,27�.

In this paper, we study the dynamics of a 2D vesicle as a
function of viscosity contrast � and shear rate �̇, both in the
bulk and near a wall. The advantage of simulations of a
vesicle in two dimensions is �i� the reduced numerical effort
of hydrodynamics simulations, which allows for larger sys-
tem sizes, longer accessible time scales, and better statistics,
and �ii� the simpler form of the equations of the KS theory,
where no integrals remain in the geometric factors—unlike
in the three-dimensional �3D� version �see Appendix A�.
This facilitates a detailed comparison of the results of theory
and simulations. Using a mesoscopic hydrodynamics ap-
proach, we first show that the SW mode also exists in two
dimensions, and determine the dynamical phase diagram.
The simulation results are compared with the predictions of a
generalized KS theory. Second, we study the lift force FL of
2D vesicles, by covering the full range of wall distances ycm,
and investigate the effects of viscosity contrast �. Moreover,
we investigate the effect of a wall on the TT-TB behavior.
For comparison with the results of mesoscopic hydrodynam-
ics simulations, we also determine FL and the inclination
angle � by the boundary-integral method for tank-treading
vesicles with �=1.

II. THEORY AND METHODS

A. Dimensionless parameters

In a 2D vesicle, the perimeter Lp and the enclosed area A
are kept constant �analogously to the constant membrane sur-
face and the enclosed volume of 3D vesicles�. It is useful to
combine these two parameters into a dimensionless quantity,
the reduced area

A�
ª

4	A

Lp
2 = �RA

Rp
�2

. �1�

Here Rp=Lp /2	 and RA=�A /	 are the radii of circles with
the same Lp and A as those of the vesicle, respectively. A� is
the ratio between the enclosed area A and the area of a circle
with the same perimeter Lp. We focus here on a reduced area
of A�=0.7 as a representative for vesicles which deviate sig-
nificantly from the circular shape.

Shape and orientation of the vesicles are quantified by a
shape parameter 
 and inclination angle � based on the gy-
ration tensor of the vesicle membrane. When �max and �min
are the two eigenvalues of the gyration tensor ��max
��min�, and êmax and êmin are the corresponding eigenvec-
tors, the “asphericity” is described by 
= ��max
−�min� / ��max+�min� and the vesicle orientation by the incli-
nation angle �= � �x̂ , êmax�, where x̂ is the shear and ŷ the
gradient direction.

The stability of dynamical phases mainly depends on two
parameters, the viscosity contrast � and the reduced shear
rate

�̇�
ª

�̇�outRp
3

�
. �2�

The time �outRp
3 /� is the characteristic relaxation time in

thermal equilibrium, where � is the bending rigidity. Thus �̇�

expresses the interplay between the perturbation by the ex-
ternal field �̇ and the ability of the vesicle to restore its
equilibrium shape.

B. Generalized Keller-Skalak theory in two dimensions

Keller-Skalak �KS� theory �2� is based on the assumption
that vesicles have a fixed ellipsoidal shape. Therefore, it can-
not describe the swinging state with oscillating vesicle
shapes. Therefore, KS theory has been generalized to include
shape deformation in three dimensions �15�. This theory is
applicable to ellipsoidal vesicles over a wide range of re-
duced volumes, while higher-order perturbation theory
�16–18� is limited to quasispherical vesicles. Here, we em-
ploy the two-dimensional version of the generalized KS
theory. The differential equations for the asphericity 
 and
inclination angle � are given by

1

�̇

d


dt
= −

b0

A��̇�

Rp

�

�F

�

+ b1 sin�2�� , �3�

1

�̇

d�

dt
=

1

2
�− 1 + B�
�cos�2��� , �4�

with prefactors

b0 =
3

4	�� + 1�
and b1 =

3

2�� + 1�
. �5�

There are no adjustable parameters. An explicit expression
for B�
� and its derivation are described in Appendix A.

The time evolution of � is described by Eq. �4�, which has
the same form as in two-dimensional KS theory. However,
B�
� is now not constant but depends on the time-dependent
vesicle shape 
�t�. The time evolution of 
 �see Eq. �3�� is
derived based on the perturbation theory of quasicircular
vesicles �33�. Here, F is the free energy of the vesicle shape
at constant A�. F attains its minimum for an elliptical vesicle
shape in equilibrium. Thus, the first term on the right-hand
side of Eq. �3� causes a relaxation of 
 toward its equilib-
rium value. The second term represents the change of 
 due
to the external flow field. Equations �3� and �4� are solved
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numerically using a fourth-order Runge-Kutta method.
Thermal fluctuations can be incorporated in this approach

by adding Gaussian white noises g
�t� and g��t� to Eqs. �3�
and �4�, respectively. The noise terms obey the fluctuation-
dissipation theorem, such that �gi�t�	=0 and �gi�t�gj�t��	
= �2kBT /i��i,j��t− t�� with i , j� 

 ,��, where kBT is the
thermal energy. As a reasonable approximation, we employ
the rotational friction coefficients of a circle,


 =
4	

3
�outRA

2 �� + 1� and � = 4	�outRp
2. �6�

C. Mesoscale hydrodynamics simulation method

1. Membrane model

The membrane is modeled by a closed chain of n mono-
mers of mass M. For a monomer with index i �with 1� i
�n�, we introduce the notation

i− = �i − 1�mod n and i+ = �i + 1�mod n �7�

for the indices of its two neighboring monomers. Thereby,
the ring topology is taken into account correctly. The mono-
mers are connected by a harmonic spring potential

Usp =
ksp

2 �
i=1

n

�Ri − l�2, �8�

where Riªri+
−ri are the bond vectors and l is the relaxed

bond length. The curvature elasticity of the membrane is
described by the bending potential

Ubend =
�

l
�
i=1

n �1 −
Ri+

· Ri

Ri+
� Ri

� . �9�

An area potential

UA =
kA

2
�A − A0�2 �10�

is introduced to control the deviations of the area A from its
target value A0. Here, the enclosed area A in Eq. �10� is
obtained from the monomer positions by

A =
1

2
ẑ · �

i=1

n

ri� ri+
. �11�

2. Multiparticle collision dynamics

For the solvent hydrodynamics, we employ multiparticle
collision �MPC� dynamics, a particle-based mesoscopic
simulation technique �34–36�. The dynamics of an MPC
fluid evolves in two alternating steps. In the “streaming
step,” particles move ballistically for a time �t, the collision
time, according to their current velocities. For the “collision
step,” solvent particles are first sorted into the cells of linear
size a of a regular square lattice; all particles in a cell then
exchange momenta such that the total translational momen-
tum is conserved in each collision cell.

Several modifications of the original MPC algorithm have
been introduced recently �37�, which differ in the way the
collision step is executed. We employ the MPC-AT+a ver-
sion of multiparticle collision dynamics, which uses an
Anderson thermostat �AT� and locally conserves angular mo-
mentum �+a� in addition to translational momentum. In
MPC-AT, new particle velocities relative to the center-of-
mass velocity are chosen from a Maxwell-Boltzmann distri-
bution with temperature T. This thermostat avoids any heat-
ing due to energy dissipation in sheared system. For details
of the MPC-AT+a algorithm, see Refs. �37,38�. We use this
algorithm since local angular-momentum conservation is
crucial in binary fluid systems with different viscosities �39�.

Simulations are performed with a rectangular simulation
box with linear sizes Lx and Ly, periodic boundary conditions
in the x direction, and no-slip wall boundary conditions in
the y direction. Linear shear flow with shear rate �̇ is realized
by moving the upper wall with a velocity �̇Lyx̂, whereas the
lower wall is held at rest.

Many properties of the MPC-AT+a solvent can be ad-
justed by the simulation parameters collision time �t, the
particle number density ns, and the particle mass m. The
solvent viscosity �=�kin+�coll is a sum of a kinetic �kin and
a collisional contribution �coll, which have been calculated
analytically �38�,

�kin =
nskBT�t

a2 � ns

ns − 1
−

1

2
� , �12�

�col =
m�ns − 7/5�

24�t
. �13�

The viscosity �out of the fluid outside of the vesicle is ad-
justed by varying the collision time �t in the range from
�t=0.003a�m /kBT to �t=0.01a�m /kBT. Since for these
collision times the mean-free path is much smaller than the
cell size a, the total shear viscosity � is dominated by �coll
�see Eqs. �12� and �13��. Since the collisional viscosity
�coll�m, the viscosity contrast � can be varied by using dif-
ferent masses min and m of the inner and outer fluid particles,
respectively, which implies

� =
�in

�out
�

min

m
. �14�

In our simulations, the viscosity contrast is varied from �
=1 to �=10 �with m�min�10m�, while all the other MPC
parameters are the same for the fluid on both sides of the
membrane.

3. Membrane interactions

In order to describe an impermeable membrane in flow, it
has to be ensured that MPC particles stay on the correct side
of the membrane �i.e., inside or outside of the vesicle�. For
numerical efficiency, it is advantageous to relax this condi-
tion for short length and time scales, as it was done in pre-
vious 3D vesicle simulations �6�. The streaming and collision
steps for the fluid particles are carried as in the absence of
the membrane. This implies that after each streaming step,
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some MPC particles have crossed the membrane. For the
�few� particles which are now located on the wrong side of
the membrane, with a direction of their velocity which would
bring them away even further away from the membrane, the
velocities have to be modified such that they move toward
the membrane instead, in order to cross back to their correct
side. We denote this velocity update a “membrane collision.”
It has to be constructed such that the translational and angu-
lar momentum as well as the kinetic energy of the fluid par-
ticles and membrane monomers are conserved locally. Our
procedure for membrane collisions is a generalization of the
standard bounce-back rule for no-slip boundary conditions.
A detailed description of this procedure is provided in Ap-
pendix B.

In order to prevent the membrane from crossing the walls,
a purely repulsive Lennard-Jones potential

Uw�y� = �4����
y
�12

− ��
y
�6� + � , 0� y� �6 2�

0, otherwise
�

is employed, which depends only on the distance y of a
monomer from a wall.

For the determination of hydrodynamic lift forces, we em-
ploy a gravitational body force fG=−ŷg��, which acts on
the internal fluid of the vesicle. Here, g denotes the strength
of the gravitational field and �� is the mass-density differ-
ence between the inner and outer fluids. The gravitational
body force fG acting on the inner fluid can be expressed as a
potential UG, which only depends on the monomer positions,

UG =
FG

6A
�

i

�yi + yi+
��ri� ri+

� · ẑ . �15�

Here, yi and yi+
are the y components of the monomer posi-

tions ri and ri+
, respectively, and FG= �AfGdA is the total

gravitational force acting on the vesicle. FG has a constant
value and is used as a simulation parameter.

As long as not specified otherwise, the parameters used in
our vesicle simulations are n=50, l=a=�62�, ns=10a−2, M
=10m, �=10kBT, and � / l=50kBT. For the reduced area, we
require that it deviates less than 1% from its target value of
A�=0.7. Since A� is a function of the perimeter Lp and the
enclosed area A �see Eq. �1��, the parameters ksp and kA for
the potentials Usp and UA, respectively, have to be suffi-
ciently large. We chose ksp=104kBT /a2 and kA=80kBT /a4.
With these parameters, the effective vesicle radius is ob-
tained to be Rp=7.8l. The size of the simulation box is Lx
=Ly =80a. Gravitational forces FG are only applied in simu-
lations for the hydrodynamic lift force, where values in the
range kBT /a�FG�50kBT /a are investigated.

In simulations, different reduced shear rates �̇� can be
achieved, according to Eq. �2�, by varying �̇, �out, Rp, or �.
Since equilibrium properties such as the undulation spectrum
depend on Rp and �, we vary �̇� by adjusting �̇ and �out. In
order to avoid inertial effects, we restrict the shear rates to
obtain low Reynolds numbers Re= �̇�Rp

2 /�out, where � is the
density of the outer fluid. The maximum Reynolds number is
Re=0.17.

D. Boundary-integral method

For comparison with our MPC simulation results of the
lift force, we also perform numerical boundary-integral cal-
culations. The hydrodynamic lift force in 2D has been stud-
ied previously with the boundary-integral approach for
vesicles in direct contact with the wall �26,27�. This method
has the advantage that it can be used to calculate lift forces
on vesicles even for very large distances ycm from the wall
and for reduced areas A� close to unity, which are not easily
accessible by MPC simulations. On the other hand, our
boundary-integral calculation is restricted to elliptical shapes
and ignores thermal fluctuations, which give rise, e.g., to
undulation-induced repulsion near a wall. We focus on tank-
treading elliptical vesicles without viscosity contrast, i.e., �
=1. In the steady tank-treading state the lift force can calcu-
lated from a single time-independent vesicle shape. Whereas
in MPC simulations, the wall distance ycm is calculated for a
given strength of the gravitational force, we follow the op-
posite procedure with the boundary-integral approach, by
calculating the lift force for a given wall distance ycm.

For ellipse half axes a1 and a2, wall distance ycm, and
inclination angle �, the location r of the vesicle membrane is
uniquely defined �with xcm�0�. With a parameterization by
the angle �, it is

r��� = ycmŷ + �cos � − sin �

sin � cos �
�r���� , �16�

where r���� is the membrane position in the principal-axis
system of the ellipse,

r���� = �a1 cos �

a2 sin �
� . �17�

In the steady tank-treading state, the center-of-mass ve-
locity vcm= x̂vcm of the vesicle has only a nonvanishing com-
ponent in shear direction. If vcm and the tank-treading angu-
lar velocity � are known, the velocity of the tank-treading
membrane is given by

v��� = x̂vcm + Rp�t̂��� �18�

with the tangent vector

t̂��� =�
a2

a1
sin �

a1

a2
cos �

−
a2

a1
cos �

a1

a2
sin � � r����

r����
. �19�

In a tank-treading membrane in shear flow, forces arising
from pressure and viscous stress have to be balanced in order
to maintain a steady motion. The force distribution f�r��
along the membrane �A is related to the velocity field at
position r by

v�r� − �̇yx̂ = �
�A

G„r,r��s�…f„r��s�…ds . �20�

Here, ds is a line element of the membrane �A, and the
second-order tensor G(r ,r��s�) is the Greens function of the
Stokes equation which satisfies the boundary conditions. For
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vesicles in an unbounded fluid, G(r ,r��s�) is the Oseen ten-
sor. In our case of a vesicle near a wall, the half-space Oseen
tensor—also known as Blake tensor—is convenient, as it re-
alizes no-slip boundary conditions at the wall. The full ex-
pression for the two-dimensional Blake tensor can be found
in Ref. �40�.

The difficulty is that the force distribution f�r�� along the
membrane is a priori unknown. Instead, we know the veloci-
ties v�r� at each site of the membrane. Equation �20� is
thereby a Fredholm integral equation of the first type. This
integral equation is solved numerically. For this purpose, we
discretize the membrane in N straight segments, which have
to be small enough such that the difference in velocities be-
tween two neighboring segments is small and the force dis-
tribution can be assumed to be constant along the segment. A
segment with index i has a velocity vi, center-of-mass posi-
tion ri, length li, and orientation ûi �see Fig. 1�. The dis-
cretized form of Eq. �20� is

vi − �̇yix̂ = �
j=1

N �
−lj/2

lj/2

G�ri,r j + û js�f�r j + û js�ds . �21�

Since the force distribution f j = f�r j + û js� is assumed to be
constant over the whole segment j, it can be moved outside
of the integral,

vi − �̇yix̂ = �
j=1

N ��
−lj/2

lj/2

G�ri,r j + û js�ds�f j = �
j=1

N

Hijf j .

�22�

The calculation of Hij can be performed analytically, both for
the free-space and the half-space Oseen tensor. Thus, the
integral in Eq. �20� is reduced to a set of linear algebraic
equations which can be easily solved numerically.

The segment velocities vi depend linearly on � and vcm
�see Eq. �18��. Therefore, we can extend the linear system of
Eq. �20� by two additional conditions, which determine �
and vcm self-consistently in the steady state. For the first
condition, we require that the sum of tangential forces along
the membrane vanishes. The second condition is that the
vesicle does not experience a net force in shear direction.
The total system of linear equations finally reads

− �̇yix̂ = �
j=1

N

Hijf j − vcmx̂ − t̂iRp� , �23�

0 = �
i=1

N

x̂ · fili, �24�

0 = �
i=1

N

t̂i · fili. �25�

This set of equations is solved numerically with up to N
=600 segments. Once, �, vcm, and the force distribution are
known, quantities such as the lift force FL and the torque M
on the vesicle, as well as the velocity v�r� and pressure fields
p�r� in the surrounding fluid, can be calculated as

FL = �
j=1

N

f jlj , �26�

M = �
j=1

N

�r j − ycmŷ�� f jlj , �27�

v�r� = �̇yx̂ + �
j=1

N ��
−lj/2

lj/2

G�r,r j + û js�ds�f j , �28�

p�r� = �
j=1

N ��
−lj/2

lj/2

g�r,r j + û js�ds� · f j . �29�

Here, g�r ,r�� is the half-space pressure vector �see Ref.
�40��. The lift force FL and the torque M �see Eqs. �26� and
�27�� are thereby functions of the four parameters �, ycm, a1,
and a2, which define the membrane location uniquely. Using
a numerical root finder �Brent’s method�, the stable inclina-
tion angle �, for which the torque vanishes, is determined
while keeping the other parameters ycm, a1, and a2 fixed.

III. DYNAMICAL REGIMES OF VISCOUS VESICLES IN
UNBOUNDED SHEAR FLOW

A. Phase diagram

We consider first the dynamics of vesicles in shear flow,
far from walls and in the absence of a gravitational field. The
2D generalized KS theory predicts a phase diagram, see Fig.
2, which shows the qualitatively the same features as a func-
tion of �̇� and � as the 3D version �15�. At small and large �,
a vesicle exhibits tank-treading �TT� and tumbling �TB� mo-
tion, respectively. At large �̇� and intermediate �, the swing-
ing �SW� phase appears. As in 3D generalized KS theory, TT
with negative inclination angles ��0 appears close to the
TT-SW transition line. The coexistence of two TT states �one
with ��0 and the other with ��0� or of a TT and a SW
states are also seen. In 2D, TT with ��0 is stable, unlike in
3D �15�, where the vesicle can escape by turning its longest
axis into the vorticity direction.

MPC simulation results of the three dynamical regimes
�TT, TB, and SW� are illustrated by a sequence of snapshots

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

a1a2

ûi

li

ri

ϕ
θ

ycm

FIG. 1. For the boundary-integral calculation, the vesicle is dis-
cretized into segments i of length li, which have the orientation ûi

and a center-of-mass position ri.
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in Fig. 3. Figure 3�a� shows a tank-treading vesicle, which
has a constant shape and orientation �except for its thermal
membrane undulations�. However, as a marker on the mem-
brane indicates, the membrane rotates around the center of
mass. A tumbling vesicle is shown in Fig. 3�b�, where the
shape remains almost unchanged, but the orientation steadily
rotates. The motion of a marker on the membrane shows that
the membrane is not completely fixed with respect to the
vesicle shape. Figure 3�c� illustrates the swinging state �see
also movie �41��. As long as the vesicle orientation has a
positive inclination angle, the elongational part of the shear
flow causes an elongation of the vesicle shape �increasing 
�.
For a large shape parameter 
, the vesicle is temporarily in
the tumbling regime, until a negative inclination angle � is
reached �for 0� t�̇�10 in Fig. 3�c��. For negative �, the
elongational component of the flow acts to reduce 
. Due to
the constraint of fixed perimeter Lp and fixed enclosed area
A, the vesicle assumes a potatolike shape, such that 
 de-

creases �for 10� t�̇�15 in Fig. 3�c��. The vesicle is then
stretched again by the elongational flow leading to a positive
inclination angle � and increasing shape parameters 
 �for
t�̇�20�.

It is important to note that elliptical deformations are not
sufficient in 2D because the constraints on perimeter and
area complete determine the elliptical shape �33�—in con-
trast to 3D, where the deformation in the vorticity direction
provides sufficient degrees of freedom �15�. Thus, higher-
order undulation modes beyond elliptical deformation are re-
quired, which can be seen clearly in Fig. 3�c�. This is remi-
niscent of the behavior of 3D vesicles in an elongational flow
after flow reversal �42,43�, where also higher-order undula-
tion modes play an important role.

B. TT-TB transition

The generalized KS theory predicts that for small shear
rates, with �̇��6, the TT-TB transition at ��3.25 hardly
depends on �̇� �see Fig. 2�. In this regime, shape deforma-
tions are very small, and the behavior can be well described
by the original KS theory. We choose a shear rate �̇
=0.01�kBT /ma2 in our simulation, corresponding to a small
reduced shear rate �̇�=3.6.

In Fig. 4, the dependence of the average inclination angle
� on the viscosity contrast � is shown. Our MPC simulations
well reproduce the results of previous boundary-integral cal-
culations by Beaucourt et al. �4�. Deviations close to the
TT-TB transition at ���4 arise from thermal membrane un-
dulations, which are present in our simulations, whereas the
results of Ref. �4� have been obtained in the zero-temperature
limit.

Moreover, thermal fluctuations lead to a continuous cross-
over rather than a sharp TT-TB transition. Thus, there are a
few tumbling events already for viscosity contrast �=3, and
also simulations with �����4 exhibit some time intervals
of tank-treading motion. Our simulations also show that the
existence of a tumbling regime depends sensitively on the
Reynolds number Re. For Re�1, � decreases more gradu-
ally with increasing �, and no tumbling motion was observed
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FIG. 2. �Color online� Phase diagram at A�=0.7. Dashed �red�
and solid �blue� lines represent the results of the generalized Keller-
Skalak theory with b1=3 / �2��+1�� �see Eq. �5�� and b1=1 / ��+1�,
respectively. The black circles ��� indicate the location of the simu-
lation which are shown in Fig. 5.

(a) Tank-treading:

(b) Swinging:

(c) Tumbling:

0 5 10 15 20 25 30 tγ̇

FIG. 3. �Color online� Sequences of vesicle snapshots for each
of the dynamical regimes, shown ��a� TT, �b� SW, and �c� TB�. A
�red� bullet marks one fixed membrane element to indicate the
membrane motion. All systems share the parameters � / l=50kBT
and A�=0.7. Further parameters are �a� �out=36�kBTm /a, �=1, �̇
=0.01�kBT /m /a corresponding to �̇�=3.6; �b� �out=120�kBTm /a,
�=4, �̇=0.0333�kBT /m /a corresponding to �̇�=38; and �c� �out

=36�kBTm /a, �=10, �̇=0.01�kBT /m /a corresponding to �̇�=3.6.
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FIG. 4. �Color online� Inclination angle � as a function of vis-
cosity contrast � for simulations with �̇�=3.6. For comparison the
results of the boundary-integral calculation of Beaucourt et al. �4�
�without thermal fluctuations� as well as the curve of KS theory �2�
�see Eq. �30�� are shown.
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at viscosity contrasts as large as �=10. Thus, we conclude
that inertial effects enhance the TT-membrane rotation.

Figure 4 also shows that KS theory �2� provides a good
description of the � dependence of � and the TT-TB transi-
tion. This transition is explained by the KS theory as follows.
The stationary inclination angle � in the tank-treading regime
is determined by Eq. �4� with fixed 
 as

� = −
1

2
arccos�−

1

B
� . �30�

For small �, the inclination angle � decreases monotonically
up to a critical viscosity contrast ��, where �=0. For larger
viscosity contrasts ����, the tumbling regime, there is no
real solution of Eq. �30�, i.e., no stationary inclination angle
exists, and the vesicle permanently rotates.

C. TB-SW transition

To investigate the TB-SW transition, we consider a fixed
viscosity contrast of �=4, and perform simulations for four
different reduced shear rates �̇�=5, 17, 22, and 38. The lo-
cations of these four shear rates in the dynamical phase dia-
gram are indicated in Fig. 2. The resulting trajectories in the
�-
 plane are shown on the left-hand side of Fig. 5. In this
representation, closed cycles indicate swinging events,
whereas trajectories spanning the full �−	 /2,+	 /2� range of
� are tumbling events. Obviously, thermal noise has a large
impact on the vesicle dynamics. In particular, at small incli-
nation angles ��0, small thermal fluctuations are decisive
for the vesicle to perform a tumbling or swinging cycle.

The simulation data of Fig. 5 suggest that the TB-SW
transition point is located between �̇�=17 and 22. This is
about a factor 2 larger than the prediction �̇�=9 of general-
ized KS theory. In the generalized KS theory, a possible
source of error can be found in the estimate of b0 and b1,
which have both been calculated in the circular limit, see Eq.
�5�. Therefore, we also calculate the phase diagram with b1
reduced by a factor 2/3, i.e., with b1=1 / ��+1�, which gives
a better agreement with our simulations for noncircular
vesicles with A�=0.7 �see Fig. 2�. In this case, the effect of
thermal noise on trajectories is found to be very similar as in
the simulations for all four reduced shear rates �see Fig. 5�.
Therefore, the deviations between the generalized KS theory
and simulations can be alleviated by a small modification of
prefactors. Further theoretical developments are needed to
determine the prefactors b0 and b1 analytically for noncircu-
lar shapes. We conclude that generalized KS theory provides
a good description of vesicle dynamics in shear flow in both
two and three spatial dimensions.

Elastic capsules �44,45� and red blood cells �46� can also
exhibit a swinging motion. However, the angle ��t� is always
positive during these oscillations—unlike SW of fluid
vesicles. The physical mechanism is an energy barrier for the
TT rotation caused by the membrane shear elasticity and the
anisotropic shape of the spectrin network �46–48�. Although,
a vesicle in 2D �a closed string� does not have membrane
shear elasticity, an energy barrier for the TT rotation can be
introduced by inhomogeneities in the spontaneous curvature
�49�. In the future, it will be interesting to investigate the

coupling of different swinging mechanisms in composite
membranes.

IV. LIFT FORCE

We now consider a vesicle under the combined effect of a
shear flow and a gravitational force FG, see Fig. 6�a�. The
vesicle moves toward or away from the wall until gravita-
tional FG and lift forces FL�ycm� balance each other �see also
movie �41��. In this steady state, the lift force FL�ycm� equals
the gravitational force in magnitude.

Figure 6�b� shows the pressure field in the outer fluid for
the steady-state configuration of a tank-treading vesicle. The
hydrodynamic lift force is the integral of the pressure forces
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FIG. 5. �Color online� Trajectories in the �-
 plane for �=4,
both with �thin red lines� and without �thick blue lines� thermal
noise. The trajectories in �a�, �c�, �d�, and �g� are obtained from
simulations, whereas the curves in �b�, �d�, �f�, and �h� are calcu-
lated from the generalized KS theory with noise and b1=1 / ��+1�.
The reduced shear rates are �̇�=5 for �a� and �b�, �̇�=17 for �c� and
�d�, �̇�=22 for �e� and �f�, and �̇�=38 for �g� and �h�. In all plots,
the corresponding theoretical trajectory according the generalized
Keller-Skalak theory without thermal noise is shown as a thick blue
�dark� line.
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over the membrane contour. The higher pressure in the gap
between the vesicle and the wall is responsible for the lift
force. Figure 6�b� also nicely demonstrates that there is a
lower pressure at the two caps of the vesicle, which is the
origin of vesicle elongation. The hydrodynamic lift force is a
pressure force which is of purely viscous nature—in contrast
to, e.g., aerodynamic forces acting on the wings of an air-
plane, which are caused by inertial forces.

The dependence of the hydrodynamic lift force on the
wall distance is shown in Fig. 7�a�—calculated as �ycm	 for
fixed gravitational force in the simulations, and as lift force
at fixed ycm in the Oseen calculations, as explained in detail
in Secs. II C 3 and II D above. Lift forces of vesicles with
��4 can be well described by a power law FL�ycm

−2 for
FL�2.5kBT /Rp, corresponding to ycm�Rp. For these dis-
tances, the vesicle is not in direct contact with the wall. At
applied gravitational forces larger than 2.5kBT /Rp, the
vesicle touches the wall �ycm�Rp�. However, the distance
ycm between the center of mass and the wall can be reduced
even further by vesicle deformation. The 1 /ycm

2 dependence
does not apply in this regime. Finally, the constraints of fixed
enclosed area A and fixed perimeter Lp keep the wall dis-
tance larger than ycm�0.628Rp.

Figure 7�a� shows that the lift forces decrease with in-
creasing viscosity ratio � for a fixed wall distance ycm. This
behavior is analyzed in more detail in Fig. 8, where the am-
plitude FLycm

2 of the lift force is plotted as a function of the
viscosity contrast �. Although solid colloidal particles of el-
liptical shape experience no net lift force �50�, tumbling
vesicles with finite � obtain lift force due to an asymmetry of
its shape deformations and a small tank-treading component
�compare Fig. 3�c��.

For vesicles in three dimensions, both boundary-integral
simulations �28� and theoretical studies �24,25� show a 1 /ycm

2

dependence of the lift force for vesicles far from the wall.
The theory of Olla �24,25� assumes an ellipsoidal shape for
the vesicles with half axes a1 ,a2 ,a3�ycm. It is not possible
in this case to derive expressions for two dimensions by tak-
ing the limit a3→�—as done in Appendix A for KS theory
of vesicles in unbounded flows—because this limit is incon-
sistent with the assumption a1 ,a2 ,a3�ycm. Therefore, in-
stead of an analytical theory, we perform boundary-integral

calculations of 2D elliptical vesicles with �=1 in the pres-
ence of a wall, as described in Sec. II D. For the results in
Fig. 7�a�, the effect of the opposite wall at Ly =10Rp is also
taken into account by plotting FL�ycm�−FL�Ly −ycm�, where
FL�ycm� and FL�Ly −ycm� are obtained from two independent
boundary-integral calculations. Of course, a more precise

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
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1.04
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(a) (b)

FIG. 6. �Color� �a� Shape and �b� pressure field of a tank-
treading vesicle under shear flow close to a wall, in steady state
with viscosity contrast �=3. The color code is expressed in units of
nskBT. The hydrodynamic lift force is balanced by an external
gravitational force FG=14kBT /a, where the average distance from
the wall is ycm=7.96a. See also movie �41�.
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FIG. 7. �Color online� �a� Lift forces and �b� average inclination
angle as a function of the average wall distance ycm of the vesicle,
from MPC simulations with �̇�=3.6 and from boundary-integral
�Oseen� calculations, as indicated. The legend in �a� applies to both
plots. Simulation points marked by big �red� circles refer to tum-
bling vesicles. For comparison, a line with the power-law depen-
dence ycm

−2 is plotted in �a�. The right-most data points in �b� corre-
spond to FG=0 so that they cannot be shown in the double-
logarithmic presentation in �a�.
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FIG. 8. �Color online� Amplitude of the lift force,
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2 / �kBTRp�, as a function of the viscosity contrast �. The am-
plitudes are fits to the curves in Fig. 7�a� for which vesicles are not
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calculation would require the use the two-wall Oseen tensor
�40� instead of the half-space Green’s function. However, as
long as the distance Ly between the two walls is sufficiently
large, FL�ycm�−FL�Ly −ycm� is a good approximation of the
two-wall lift force. Figures 7�a� and 8 show that the
boundary-integral calculation indeed agrees nicely with the
corresponding MPC simulation for �=1. The amplitudes
FLycm

2 only differ by about 25%. Reasons for this deviation
are that the boundary-integral calculation is done for ellipti-
cal shapes, whereas vesicles in simulations are closer to the
equilibrium shape �compare Fig. 1 and Fig. 6�. Moreover
thermal fluctuations in the MPC simulations may cause dif-
ferences.

Figure 7�a� shows that tumbling is suppressed when the
gravitational force exceeds a threshold value, depending on
the viscosity contrast �. In order to perform a tumbling mo-
tion, the center-of-mass distance ycm has to be on the order of
or larger than the long vesicle axis a1. However, for larger
gravitational forces, the center-of-mass distance ycm becomes
smaller than a1, such that even vesicles with high viscosity
contrasts do not tumble. Even if ycm is slightly larger than a1,
the vesicle cap has to come so close to the wall that the
resulting pressure forces prevent the inclination angle to
reach 	 /2. This leads to the dynamical phase diagram shown
in Fig. 9. When the gravitational force is large, tumbling is
suppressed and the vesicle displays a tank-treading motion at
the wall. With increasing �, the gravitational force necessary
to prevent tumbling increases.

The dependence of the inclination angle � on the wall
distance ycm is shown in Fig. 7�b�. Without a gravitational
force, the lift force caused by the upper wall at y=10Rp
compensates the lift force of the lower wall when the vesicle
is in the center, at ycm=5Rp. Since the lift forces are very
small nearby, strong fluctuations are observed in the wall
distances for small FG.

As long as a vesicle is tank treading, its inclination angle
� decreases when it approaches the wall. Even if the vesicle
does not touch the wall, the pressure at the lowest part of the
membrane is highest �see Fig. 6�b�� such that it causes a
torque which lowers �. For very small wall distances, the
vesicle comes into direct contact with the wall, where the
repulsive wall potential causes an additional torque, which
decreases � even further, until the vesicle is finally com-
pletely parallel to the wall.

Vesicles with ��3 start to tumble at sufficiently large
wall distances. Since vesicles with viscosity ratios �=3 and
�=4 are still tank treading most of the time and only occa-
sionally perform a tumbling motion, their inclination angles
are nonzero, whereas for �=10 and FG�1, the average in-
clination angle � essentially vanishes �see Fig. 7�b��.

We employ the boundary-integral approach to calculate
the dependence of the hydrodynamic lift force of vesicles
with �=1 on the reduced area A� in the absence of thermal
fluctuations. Also, since this method is not restricted by the
system size �as simulations�, the lift forces can be calculated
even for very large wall distances. Figure 10 shows the hy-
drodynamic lift force as a function of the wall distance ycm
for different reduced areas A� in the range 0.65�A��0.99.
This plot shows that the ycm

−2 dependence of the hydrody-
namic lift force FL only holds for distances ycm�5Rp from
the wall. For larger distances ycm, a crossover to a
1 / ��ycm /Rp�ln�ycm /Rp�� dependence is obtained. This power
law with a logarithmic correction fits perfectly the numerical
data of the boundary-integral calculation for ycm�2Rp for all
considered reduced areas. Figure 11 shows the amplitudes
K=FLycm ln�ycm /Rp� of the lift forces FL vs 1−A� in the
far-field limit. These amplitudes K are determined by fitting
the expression FL=K / ��ycm /Rp�ln�ycm /Rp�� to all data with
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FIG. 9. �Color online� Dynamic phase diagram of tank-treading
and tumbling states as a function of the gravitational force FG and
the viscosity contrast �. The reduced shear rate is �̇�=3.6. Circles
��� indicate tumbling �TB� motion, squares ��� tank-treading �TT�
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ycm�60Rp. For 1−A�=0, i.e., for a circular vesicle, the lift
force vanishes, which directly follows from the time-
inversion symmetry of the Stokes equation. For small devia-
tions from the circular shape, the lift force rapidly increases
with 1−A�, and follows a power-law dependence K
��1−A����p /	, with the excess length �p=Lp /RA−2	,
for 1−A��0.1 �see Fig. 11�. We observe a monotonic in-
crease in the lift force with increasing 1−A� over the whole
range of reduced areas A�.

Since boundary-integral calculations do not take into ac-
count thermal fluctuations, lift forces can be determined for
large ycm �only limited by numerical accuracy�. However in
simulations as well as in real systems, lift forces at large ycm
have a vanishing effect compared to thermal noise. More-
over, with very large wall distance ycm���out /��̇, inertial
effects are not negligible so that the Stokes approximation
becomes less reliable �25�.

V. SUMMARY AND CONCLUSION

We have studied the dynamics of vesicles in shear flow in
a two-dimensional model system. This system shows a vari-
ety of interesting dynamical phenomena.

First, we have investigated the effect of the viscosity con-
trast �, i.e., the ratio between the inner and outer viscosities
of a vesicle, on the dynamics in unbounded flows. With in-
creasing �, the sequence from “tank treading” over “swing-
ing” to “tumbling” motion is generically observed—except
for small shear rates �̇, where the intermediate swinging
phase is absent. Thus, the swinging phase appears in the
phase diagram of 2D vesicles under shear in the same way as
it was found previously for 3D ellipsoidal vesicles. However,
the mechanism of swinging is different in two and three di-
mensions. While in 3D, ellipsoidal deformations are suffi-
cient to obtain swinging, in 2D higher-order undulation
modes are required. Thermal fluctuations play an important
role; they lead to a smooth crossover between the dynamical
states, with intermittent tumbling and tank-treading motions.
Our simulations are in semiquantitative agreement with a
theoretical description based on a generalized Keller-Skalak
approach.

Second, we have investigated the behavior of vesicles
near walls. Close to a wall, tumbling is strongly suppressed.
Furthermore, the vesicle is repelled from the wall by the
hydrodynamical lift force. We have found by boundary-
integral calculations that the hydrodynamic lift force decays
with increasing wall distance ycm like 1 / �ycm ln ycm�. How-
ever, for small wall distances—in particular in the regime of
the MPC simulations—an effective ycm

−2 dependence is ob-
served. With increasing viscosity contrast, the lift force be-
comes weaker, as the vesicle becomes less deformable. The
lift force also decreases with increasing reduced area A� and
vanishes in the circular limit. We find that our numerical data
are well described by a �1−A� dependence.

Our results show that there is a different behavior of the
lift force at intermediate and large distances from the wall,
and that the lift force decreases significantly with increasing
viscosity contrast. This may shed some light on the behavior
in three dimensions, where experiments show a dependence

of the lift force on the wall-membrane distance h, which
decays as h−1 for distances smaller than the vesicle radius
�30�, whereas a ycm

−2 decay has been found theoretically in a
small range 1.1�ycm /Rp�1.25 of wall distances �28�. Thus,
we hope that our results will stimulate new experiments and
simulations in 3D over a wider range of wall distances, re-
duced volumes, and viscosity contrasts.
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APPENDIX A: DERIVATION OF 2D GENERALIZED
KELLER-SKALAK THEORY

1. Keller-Skalak theory in two dimensions

Keller and Skalak �2� derived analytical expressions for
the inclination angle � and the average angular velocity � for
3D vesicles of fixed ellipsoidal shape, with �x /a1�2

+ �y /a2�2+ �z /a3�2=1, based on the Jeffery theory �51�.
Although the KS theory is formulated for vesicles in three

dimensions, it is straightforward to transfer it to two-
dimensional systems by simply taking the limit a3→�. The
resulting cylindrical three-dimensional geometry is equiva-
lent to a 2D vesicle with the shape of an ellipse, �x /a1�2

+ �y /a2�2=1 with a1�a2. Let S� be the frame which has its
origin at the center of the ellipse, and the x� direction points
into the direction of the long axis. Then the local velocity v�
of an element of the tank-treading membrane is assumed to
be

�vx�,vy�� = ��−
a1

a2
x2�,

a2

a1
x1�� . �A1�

in the frame S�. We define the auxiliary variables

f0 ª
1 − 
D

2

1 + 
D
2 , f1 ª

1 − 
D
2

8
D
, f2 ª

1 + 
D
2

2
,

where 
D= �a1+a2� / �a1−a2�. The balance of torques on the
membrane and the assumption that the work done on the
vesicles by the shear flow is dissipated in the interior of the
vesicle leads to the nonlinear differential equation

d�

dt
=
�̇

2
�− 1 + B�
D,��cos�2��� , �A2�

B�
D,�� = f0� f1 +
f1

−1

1 + f2�� − 1�� . �A3�

Furthermore, the average angular velocity � is found to be

�

�̇
=

cos�2��
2f1
1 + f2�� − 1��

. �A4�
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2. Shape equation in two dimensions

The vesicle shape is expanded in Fourier modes with po-
lar angle � as r���=RAer
1+ �um exp�im� /�2	��. Based
on the Stokes approximation and perturbation theory, the dy-
namics of a quasicircular vesicle is described by �33�

�um

�t
=

i�̇m

2
um −

��mEm

�outRA
3 um� ih�̇�m, 2, �A5�

where �m= m /2��+1��m2−1�, Em= �m2−1��m2−3 /2+��,
and h=�2	 /2��+1�. A Lagrange multiplier � keeps the pe-
rimeter Lp constant. Following the procedure for 3D �15�, we
decompose u 2 into amplitude and phase, u 2
=r exp��2i��, and replace the force 2�Emr by �F /�r. Then,
Eq. �3� is obtained with 
=3r /�2	+O�r2�.

The free energy F�
� for the same simulation parameters
calculated with a version of the generalized-ensemble Monte
Carlo method �6� �see Fig. 12�: The vesicle conformations
are sampled under the uniform distribution of 
, and then the
canonical distribution is obtained by the reweighing. Instead
of an interpolation �5,6,15�, we use fit functions here to ob-
tain smooth functions. The force is fitted as a function

−�1 /kBT��F /�
=9+180
−110
2−exp�80
−46�. We ob-
tained the relation 
D=2
 /3+0.14
4 by fitting for the el-
lipse of A�=0.7.

APPENDIX B: MEMBRANE COLLISIONS WITH THE
SOLVENT

For the modeling of an impermeable membrane, interior
and exterior solvent particles have to stay on the appropriate
side of the membrane. Depending on the position of the
MPC particle with respect to membrane bonds, either one or
two membrane monomers participate in a membrane colli-
sion. The new velocities of the ncoll particles �the MPC par-
ticle and the ncoll−1 membrane monomers� after the collision
are then

vi,new = 2�vcm + �� ri,c� − vi, �B1�

where vcm is the center-of-mass velocity of the ncoll-body
system, � is its angular velocity, and ri,c are the particle
positions relative to the center of mass of the ncoll-body sys-
tem. This is a bounce-back collision for the relative veloci-
ties which conserves both the total translational and angular
momenta. The spatial regions for the selection of colliding
MPC particles and membrane monomers are illustrated in
Fig. 13.
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FIG. 13. Spatial regions for the membrane collision between
MPC particles and membrane monomers. MPC particles located in
the dark-gray regions perform a two-body collision with the mono-
mers i or i+. MPC particles in the light-gray regions collide with
both monomers. For further explanations, see text.
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