34 research outputs found

    A Simple Parameterization to Enhance the Computational Time in the Three Layer Dry Deposition Model for Smooth Surfaces

    Get PDF
    Optimization of dry deposition velocity calculation has been of great interest. Every time, determining the value of the concentration boundary layer (CBL) thickness led to a waste of numerical calculation time, which appears as a huge time in large-scale climate models. The goal of this study is to optimize the numerical calculation time in the three-layer deposition model for smooth surfaces through the development of a MATLAB code that can parameterize the appropriate concentration boundary layer height (y+cbl) and internal integral calculation intervals for each particle diameter Dp (0.01–100 µm) and friction velocity u* (0.01–100 m/s). The particle concentration, as a solution to the particle flux equation, is obtained and modeled numerically by performing the left Riemann sum using MATLAB software. On the other hand, the number of subdivisions N of the Riemann sum was also parameterized for each Dp and u* in order to lessen the numerical calculation time. From a numerical point of view, the new parameterizations were tested by several computers; about 78% on the average of the computation time was saved when compared with the original algorithm. In other words, on average, about 1.2 s/calculation was gained, which is valuable in climate models simulations when millions of dry deposition calculations are needed

    A Simple Parameterization to Enhance the Computational Time in the Three Layer Dry Deposition Model for Smooth Surfaces

    Get PDF
    Optimization of dry deposition velocity calculation has been of great interest. Every time, determining the value of the concentration boundary layer (CBL) thickness led to a waste of numerical calculation time, which appears as a huge time in large-scale climate models. The goal of this study is to optimize the numerical calculation time in the three-layer deposition model for smooth surfaces through the development of a MATLAB code that can parameterize the appropriate concentration boundary layer height (y+cbl) and internal integral calculation intervals for each particle diameter Dp (0.01–100 µm) and friction velocity u* (0.01–100 m/s). The particle concentration, as a solution to the particle flux equation, is obtained and modeled numerically by performing the left Riemann sum using MATLAB software. On the other hand, the number of subdivisions N of the Riemann sum was also parameterized for each Dp and u* in order to lessen the numerical calculation time. From a numerical point of view, the new parameterizations were tested by several computers; about 78% on the average of the computation time was saved when compared with the original algorithm. In other words, on average, about 1.2 s/calculation was gained, which is valuable in climate models simulations when millions of dry deposition calculations are needed

    On the Behavior of Coupled Shear Walls: Numerical Assessment of Reinforced Concrete Coupling Beam Parameters

    Get PDF
    Modern construction of high-rise and tall buildings depends on coupled shear walls system to resist the lateral loads induced by wind and earthquake hazards. The lateral behavior of this system depends on the structural behavior of its components including coupling beams and shear walls. Although many research studies in the literature investigated coupling beams and shear walls, these studies stopped short of investigating the coupled shear walls as a system. Therefore, in this research, the effect of the coupling beam parameters on the nonlinear behavior of the coupled shear walls system was investigated. The full behavior of a 10-story coupled shear wall system was modeled using a series of finite element analyses. The analysis comprised of testing several coupling beam parameters to capture the effect of each parameter on system response including load-deflection behavior, coupling ratio, crack pattern, and failure mechanism. The results indicated that a span-to-depth ratio equal to two is a turning point for the coupling beam behavior. Specifically, the behavior is dominated by ordinary flexure for a ratio of more than two and deep beam behavior for a ratio of less than two. This study showed that the coupling beam width does not have a significant effect on the coupled shear wall response. Additionally, it was concluded that the excessive coupling beam diagonal reinforcement could significantly affect the coupled shear walls behavior and therefore an upper limit for the diagonal reinforcement was provided. Moreover, limitations on the longitudinal and diagonal reinforcement and stirrups are presented herein. The analysis results presented in this paper can provide guidance for practitioners in terms of making decisions about the coupling ratio of the coupled shear walls.&nbsp

    Multi-hazard socio-physical resilience assessment of hurricane-induced hazards on coastal communities

    Get PDF
    Hurricane-induced hazards can result in significant damage to the built environment cascading into major impacts to the households, social institutions, and local economy. Although quantifying physical impacts of hurricane-induced hazards is essential for risk analysis, it is necessary but not sufficient for community resilience planning. While there have been several studies on hurricane risk and recovery assessment at the building- and community-level, few studies have focused on the nexus of coupled physical and social disruptions, particularly when characterizing recovery in the face of coastal multi-hazards. Therefore, this study presents an integrated approach to quantify the socio-physical disruption following hurricane-induced multi-hazards (e.g., wind, storm surge, wave) by considering the physical damage and functionality of the built environment along with the population dynamics over time. Specifically, high-resolution fragility models of buildings, and power and transportation infrastructures capture the combined impacts of hurricane loading on the built environment. Beyond simulating recovery by tracking infrastructure network performance metrics, such as access to essential facilities, this coupled socio-physical approach affords projection of post-hazard population dislocation and temporal evolution of housing and household recovery constrained by the building and infrastructure recovery. The results reveal the relative importance of multi-hazard consideration in the damage and recovery assessment of communities, along with the role of interdependent socio-physical system modeling when evaluating metrics such as housing recovery or the need for emergency shelter. Furthermore, the methodology presented here provides a foundation for resilience-informed decisions for coastal communities

    Optimal Selection of Short-and Long-Term Mitigation Strategies for Buildings within Communities under Flooding Hazard

    Get PDF
    Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community resilience perspective is limited in the literature. Investing in flood mitigation is critical for communities to protect the physical and socioeconomic systems that depend on them. While there are multiple mitigation options to implement at the building level, this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses within a community. In this research, a mixed integer linear programming model is proposed for studying the effects and trade-offs associated with pre-event short-term and long-term mitigation strategies to minimize the expected economic losses associated with floods. The capabilities of the proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland community on the Lumber River. The mathematically optimal building-level flood mitigation plan is provided based on the available budget, which can significantly minimize the total expected direct economic loss of the community. The results reveal important correlations among investment quantity, building-level short- and long-term mitigation measures, flood depths of various locations, and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term mitigation measures based on available budget by providing decision support to building owners regarding mitigation measures for their buildings.This research was partially funded by the National Institute of Standards and Technology (NIST) Center of Excellence for Risk-Based Community Resilience Planning through a cooperative agreement with Colorado State University [70NANB20H008 and 70NANB15H044]. This research was also partially funded by the National Science Foundation (NSF) through award 2052930. Article processing charge was partially provided by the University of Oklahoma Libraries’ Open Access Fund.Ye

    Immunostimulatory and anti-inflammatory impact of Fragaria ananassa methanol extract in a rat model of cadmium chloride-induced pulmonary toxicity

    Get PDF
    Cadmium is an extremely dangerous heavy metal that can lead to disastrous consequences in all organisms. Several natural remedies reduce the toxicities of experimentally generated metals in animals. Strawberry Fragaria ananassa contains several bioactive compounds that may mitigate heavy-metal toxicity. The study aim was to evaluate the ability of a strawberry fruit methanol extract (SE) to reduce Cd toxicity and to identify and quantify the active constituents of SE. Forty Wistar rats were classified into four groups: the control group– 1 ml saline IP; SE group– 100 mg of SE/kg rats orally; cadmium (Cd) group–2 mg CdCl2/kg body weight/IP daily; and treated group– SE given 1 hour before Cd administration. Administration of Cd induced several histopathological and immunohistochemical alterations in lung sections. Biochemical analysis of lung homogenates and mRNA levels of antioxidants and inflammatory cytokines indicated significant changes to the risk profile. SE administration significantly decreased the oxidative stress, inflammation, tissue damage, the mean area percentage of collagen fibers, and positive immuno-expressions of TNF-α and NF-κB induced by CdCl2. Moreover, the MDA, TNF-α, GM-CSF, and IL-1β levels in Cd-exposed rat lung tissue were significantly lower in the SE-treated group than in the Cd-group. SE significantly augmented lung GSH, SOD, HO‐1, GPx-2, and Nrf2 levels in Cd-exposed rats. SE mitigated Cd-caused oxidative stress and lung inflammation. Therefore, regularly consuming a strawberry-rich diet could benefit general health and help prevent and treat diseases

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
    corecore