10 research outputs found

    Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma.

    No full text
    Pediatric brainstem gliomas often harbor oncogenic K27M mutation of histone H3.3. Here we show that GSKJ4 pharmacologic inhibition of K27 demethylase JMJD3 increases cellular H3K27 methylation in K27M tumor cells and demonstrate potent antitumor activity both in vitro against K27M cells and in vivo against K27M xenografts. Our results demonstrate that increasing H3K27 methylation by inhibiting K27 demethylase is a valid therapeutic strategy for treating K27M-expressing brainstem glioma

    Virtual alignment of pathology image series for multi-gigapixel whole slide images

    No full text
    Abstract Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses

    Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma.

    No full text
    Pediatric brainstem gliomas often harbor oncogenic K27M mutation of histone H3.3. Here we show that GSKJ4 pharmacologic inhibition of K27 demethylase JMJD3 increases cellular H3K27 methylation in K27M tumor cells and demonstrate potent antitumor activity both in vitro against K27M cells and in vivo against K27M xenografts. Our results demonstrate that increasing H3K27 methylation by inhibiting K27 demethylase is a valid therapeutic strategy for treating K27M-expressing brainstem glioma
    corecore