1,146 research outputs found

    Photonic stop bands in quasi-random nanoporous anodic alumina structures

    Full text link
    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite- difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors

    Self-assembled particulate PsaA as vaccine against Streptococcus pneumoniae infection

    Get PDF
    Streptococcus pneumoniae is a human pathogen responsible for the majority of childhood pneumonia and media otitis cases worldwide. The diversity of its capsular polysaccharides (CPS) results in more than 91 serotypes of which at least 23 are virulent. Various CPS conjugated to immunogenic carrier proteins are currently licensed and provide protection against the infection caused by the respective serotypes but not against new and emerging virulent serotypes. In this study, we considered the conserved protein antigen PsaA, the pneumococcal surface adhesin A, in order to overcome the limitations of CPS antigens. The PsaA was translationally fused to a polyhydroxybutyrate (PHB) synthase which mediated production of PsaA displayed on PHB inclusions in recombinant Escherichia coli. This suggested that the PsaA fusion to the PHB synthase did not interfere with PHB synthase activity and its ability to mediate formation of nano-sized inclusions composed of a PHB core surrounded by the PHB synthase fused to PsaA. Isolated PHB beads showed a negative surface charge. Transmission electron microscopy analysis suggested that the PsaA fusion to the PHB synthase reduced the size of PHB beads from about 500 nm to 100 nm. The integrity and antigenicity of the fusion protein attached to isolated PHB beads was confirmed by SDS-PAGE, tryptic peptide fingerprinting analysis using MALDI-TOF-MS/MS and immunoblotting using a monoclonal anti-PsaA antibody. Mice immunized with PsaA displaying PHB beads produced high and specific IgG levels dominated by IgG1 isotype. While IgG1 titer were similar between soluble and insoluble PsaA, the IgG2 titers were strongly increased upon vaccination with insoluble PsaA i.e. PsaA displayed on PHB beads. Particulate PsaA-PHB beads elicited IgG antibodies recognizing PsaA in whole cell lysates of seven different serotypes of S. pneumoniae. This study suggested that PHB beads are suitable carriers for PsaA in order to induce a significant and specific Th-2-type immune response

    Leading Effects in Hadroproductions of Lambda_c and D From Constituent Quark-Diquark Cascade Picture

    Full text link
    We discuss the hadroproductions of Lambda_c, Lambda_c bar, D and D bar in the framework of the constituent quark-diquark cascade model taking into account the valence quark annihilation. The spectra of Lambda_c and Lambda_c bar in pA, Sigma^-A and pi^-A collisions are well explained by the model using the values of parameters used in hadroproductions of D and D bar. It is shown that the role of valence diquark in the incident baryon is important for D bar productions as well as for Lambda_c production.Comment: 11 pages, 5 figures, v2:some explanations added, references added, typos corrected, v3: top margin change

    Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer

    Get PDF
    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole L-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in L-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA’s substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in L-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism

    Chromosomal control of non-gliadin proteins from the 70% ethanol extract of wheat endosperm

    Full text link
    The non-gliadin fraction of the 70% ethanol extracts of compensated nulli-tetrasomics and ditelosomics of Triticum aestivum cv. Chinese Spring has been analyzed by combined electrofocusing and electrophoresis. Seventeen of the 21 protein map components of the euploid have been ascribed to eight chromosomes: 4A, 3BS, 6BS, 7BS, 3D, 4D, 5D and 7DS. The relationship of the different map components with other proteins previously associated with the same chromosomes is discusse

    Natural variation in a short region of the Acidovorax citrulli type III‐secreted effector AopW1 is associated with differences in cytotoxicity and host adaptation

    Get PDF
    Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.United States-Israel Binational Agriculture Research and Development (BARD) Fund S-5023-17

    Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    Get PDF
    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators

    A Somatically Diversified Defense Factor, FREP3, Is a Determinant of Snail Resistance to Schistosome Infection

    Get PDF
    Schistosomiasis, a neglected tropical disease, owes its continued success to freshwater snails that support production of prolific numbers of human-infective cercariae. Encounters between schistosomes and snails do not always result in the snail becoming infected, in part because snails can mount immune responses that prevent schistosome development. Fibrinogen-related protein 3 (FREP3) has been previously associated with snail defense against digenetic trematode infection. It is a member of a large family of immune molecules with a unique structure consisting of one or two immunoglobulin superfamily domains connected to a fibrinogen domain; to date fibrinogen containing proteins with this arrangement are found only in gastropod molluscs. Furthermore, specific gastropod FREPs have been shown to undergo somatic diversification. Here we demonstrate that siRNA mediated knockdown of FREP3 results in a phenotypic loss of resistance to Schistosoma mansoni infection in 15 of 70 (21.4%) snails of the resistant BS-90 strain of Biomphalaria glabrata. In contrast, none of the 64 control BS-90 snails receiving a GFP siRNA construct and then exposed to S. mansoni became infected. Furthermore, resistance to S. mansoni was overcome in 22 of 48 snails (46%) by pre-exposure to another digenetic trematode, Echinostoma paraensei. Loss of resistance in this case was shown by microarray analysis to be associated with strong down-regulation of FREP3, and other candidate immune molecules. Although many factors are certainly involved in snail defense from trematode infection, this study identifies for the first time the involvement of a specific snail gene, FREP3, in the phenotype of resistance to the medically important parasite, S. mansoni. The results have implications for revealing the underlying mechanisms involved in dictating the range of snail strains used by S. mansoni, and, more generally, for better understanding the phenomena of host specificity and host switching. It also highlights the role of a diversified invertebrate immune molecule in defense against a human pathogen. It suggests new lines of investigation for understanding how susceptibility of snails in areas endemic for S. mansoni could be manipulated and diminished
    corecore