3,692 research outputs found

    Cellular basis of pineal gland development: Emerging role of microglia as phenotype regulator

    Get PDF
    The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.Fil: Ibañez Rodriguez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Noctor, Stephen C.. University of California; Estados UnidosFil: Muñoz, Estela Maris. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Abnormal white matter tracts resembling pencil fibers involving prefrontal cortex (Brodmann area 47) in autism: a case report.

    Get PDF
    BackgroundAutism is not correlated with any neuropathological hallmark as the brain of autistic individuals lack defined lesions. However, previous investigations have reported cortical heterotopias and local distortion of the cytoarchitecture of the neocortex in some cases of autism.Case presentationOur patient was a 40-year-old white woman diagnosed at an early age with autism and mental retardation. Pencil fibers were present within the prefrontal cortex (Brodmann area 47) and its composition resembled that of the underlying white matter region. Pencil fibers encompassed most of the extent of the cortical grey matter and were populated by oligodendrocytes, astrocytes, and microglial cells, but not by neurons.ConclusionsHere we report a new cytoarchitectural abnormality that has not been previously described in autism. Future pathological examinations should keep in mind the potential presence of pencil fibers within the prefrontal cortex of cases with autism

    Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling

    Get PDF
    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area

    Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    Get PDF
    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions

    The ROS wheel: refining ROS transcriptional footprints

    Get PDF
    In the last decade, microarray studies have delivered extensive inventories of transcriptome-wide changes in messenger RNA levels provoked by various types of oxidative stress in Arabidopsis (Arabidopsis thaliana). Previous cross-study comparisons indicated how different types of reactive oxygen species (ROS) and their subcellular accumulation sites are able to reshape the transcriptome in specific manners. However, these analyses often employed simplistic statistical frameworks that are not compatible with large-scale analyses. Here, we reanalyzed a total of 79 Affymetrix ATH1 microarray studies of redox homeostasis perturbation experiments. To create hierarchy in such a high number of transcriptomic data sets, all transcriptional profiles were clustered on the overlap extent of their differentially expressed transcripts. Subsequently, meta-analysis determined a single magnitude of differential expression across studies and identified common transcriptional footprints per cluster. The resulting transcriptional footprints revealed the regulation of various metabolic pathways and gene families. The RESPIRATORY BURST OXIDASE HOMOLOG F-mediated respiratory burst had a major impact and was a converging point among several studies. Conversely, the timing of the oxidative stress response was a determining factor in shaping different transcriptome footprints. Our study emphasizes the need to interpret transcriptomic data sets in a systematic context, where initial, specific stress triggers can converge to common, aspecific transcriptional changes. We believe that these refined transcriptional footprints provide a valuable resource for assessing the involvement of ROS in biological processes in plants

    Cajal, Retzius, and Cajal–Retzius cells

    Get PDF
    The marginal zone (MZ) of the prenatal cerebral cortex plays a crucial role in cellular migration and laminar patterning in the developing neocortex and its equivalent in the adult brain - layer I, participates in cortical circuitry integration within the adult neocortex. The MZ/layer I, which has also been called the plexiform layer and cell-poor zone of Meynert, among others, is home to several cell populations including glia, neurons and Cajal-Retzius (CR) cells. Cajal once said that the MZ is one of the oldest formations in the phylogenetic series, and that the characteristics of layer I in human are similar in all vertebrates except fish (Ramon y Cajal, 1899). Despite the presence of CR cells in the MZ/layer I of all developing and adult vertebrate brains, and more than one hundred years of research, the phenotype and function of layer I cells have still not been clearly defined. Recent technological advances have yielded significant progress in functional and developmental studies, but much remains to be understood about neurons in MZ/layer I. Since the time of Retzius and Cajal, and continuing with modern era research from the likes of Marín-Padilla, the study of CR cells has been based on their morphological characteristics in Golgi staining. However, since Cajal’s initial description, the term ‘CR cell’ has been applied differently and now is often used to indicate reelin (Reln) positive cells in MZ/layer I. Here we review the history of work by Cajal, Retzius and others pertaining to CR cells. We will establish a link between original descriptions of CR cell morphology by Cajal, Retzius and others, and current understandings of the cell populations that reside in MZ/layer I based on the use of cellular markers. We propose to use the term ‘CR cell’ for the class of neurons that express Reln in the MZ/layer I in both prenatal, developing and adult cerebral cortex

    Structural Basis for Self-Renewal of Neural Progenitors in Cortical Neurogenesis

    Get PDF
    In mammalian brain development, neuroepithelial cells act as progenitors that produce self-renewing and differentiating cells. Recent technical advances in live imaging and gene manipulation now enable us to investigate how neural progenitors generate the 2 different types of cells with unprecedented accuracy and resolution, shedding new light on the roles of epithelial structure in cell fate decisions and also on the plasticity of neurogenesis

    How multi-dimensional reading, facilitated by differentiation & choice, motivates young readers: a case-study of a Reading Workshop

    Get PDF
    For the purpose of this thesis an action research project was undertaken by the author, a primary school teacher, with children in an all-girl’s second class setting aged between seven and eight years old. This experience is documented through a self-study action research methodology. The research examines the implementation of a multi-dimensional reading approach in the form of the Reading Workshop with a focus on differentiation and choice. The objective of this study is to develop the children’s intrinsic motivation to read and to foster a love of reading. The research reports that providing children with a differentiated learning environment affords them the opportunity to experience success in their learning. Furthermore, providing children with choice of reading materials peaks their interest levels. Both elements combined support the development of intrinsic motivation in readers. This study explores the authors’ experience of this research through a social constructivist lens and a self-study action research methodology. Qualitative data was collected in the form of openended participant questionnaires, interviews and a reflective diary over a six-week period. This data was then contextualised using the Charmaz grounded theory method. The study concludes that intrinsic motivation to read can be fostered in a child through the facilitation of differentiation and choice in the classroom, using the Reading Workshop framework
    corecore