18 research outputs found

    Stellar population and structural properties of dwarf galaxies and young stellar systems in the M81 group

    Get PDF
    We use Hyper Suprime-Cam on the Subaru Telescope to investigate the structural and photometric properties of early-type dwarf galaxies and young stellar systems at the center of the M81 Group. We have mapped resolved stars to 2\sim2 magnitudes below the tip of the red giant branch over almost 6.5 square degrees, corresponding to a projected area of 160×160kpc160\times160 \rm{kpc} at the distance of M81. The resulting stellar catalogue enables a homogeneous analysis of the member galaxies with unprecedented sensitivity to low surface brightness emission. The radial profiles of the dwarf galaxies are well-described by Sersic and King profiles, and show no obvious signatures of tidal disruption. The measured radii for most of these systems are larger than the existing literature values and we find the total luminosity of IKN (MV,0=14.29\rm{M_{V,0}}=-14.29) to be almost 3 magnitudes brighter than previously-thought. We identify new dwarf satellite candidates, d1006+69 and d1009+68, which we estimate to lie at a distance of 4.3±0.24.3\pm0.2 Mpc and 3.5±0.53.5\pm0.5 Mpc. With MV,0=8.91±0.40\rm{M_{V,0}}=-8.91\pm0.40 and [M/H]=1.83±0.28\rm{[M/H]}=-1.83\pm0.28, d1006+69 is one of the faintest and most metal-poor dwarf satellites currently-known in the M81 Group. The luminosity functions of young stellar systems in the outlying tidal HI debris imply continuous star formation in the recent past and the existence of populations as young as 30 Myr old. We find no evidence for old RGB stars coincident with the young MS/cHeB stars which define these objects, supporting the idea that they are genuinely new stellar systems resulting from triggered star formation in gaseous tidal debris.Comment: 24 pages, 22 figures, Accepted for publication in Ap

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey

    Electron Microscopic Investigation of Wood Tissue

    Get PDF

    Characteristics of mitral valve leaflet length in patients with pectus excavatum: A single center cross-sectional study.

    No full text
    The mitral valve morphology in patients with pectus excavatum (PE) has not been fully investigated. Thirty-five patients with PE, 46 normal controls, and patients with hypertrophic cardiomyopathy (HCM) who underwent 2 leaflet length measurements of Carpentier classification P2 and A2 using a transthoracic echocardiography were retrospectively investigated. The coaptation lengths and depths, papillary muscle tethering length, and mitral annular diameters were also measured. The P2 and A2 lengths were separately compared between 2 groups: older than 16 years and 16 years or younger. Furthermore, the correlations between actual P2 or A2 lengths and Haller computed tomography index, an index of chest deformity, were investigated in patients with PE exclusively. Among subjects older than 16 years, patients with PE had significantly shorter P2, longer A2, shorter copatation depth, and longer papillary muscle tethering length compared with normal controls. Similarly, patients with PE had significantly shorter P2 and shorter coaptation depth even compared with patients with HCM, while no significant difference was found in A2 length and papillary muscle tethering length. The same tendency was noted between 4 normal controls and 7 age- and sex-matched patients with PE ≤ 16 years old. No significant difference regarding A2/P2 ratio was found between patients with PE older and younger than 16 years. No significant correlation between the Haller computed tomography index and actual mitral leaflet lengths in patients with PE older than 16 years was noted; the same was observed for A2/P2 in all patients with PE. In conclusion, the characteristic features of the shorter posterior mitral leaflet, the longer anterior mitral leaflet, the shorter coaptation depth, and the longer papillary muscle tethering length in patients with PE was demonstrated. This finding might provide a clue regarding the etiology of mitral valve prolapse in PE at its possible earliest form
    corecore