39 research outputs found

    Influences on the oceanic biogeochemical cycling of the hybrid-type metals : cobalt, iron, and manganese

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, February 2012Trace metal cycling is one of many processes that influence ocean ecosystem dynamics. Cobalt, iron, and manganese are redox active trace metal micronutrients with oceanic distributions that are influenced by both biological and abiotic sources and sinks. Their open ocean concentrations range from picomolar to nanomolar, and their bioavailabilities can impact primary production. Understanding the biogeochemical cycling of these hybrid-type metals with an emphasis on cobalt was the focus of this thesis. This was accomplished by determining the dissolved distributions of these metals in oceanic regions that were characterized by different dominant biogeochemistries. A large subsurface plume of dissolved cobalt, iron, and manganese was found in the Eastern South Atlantic. The cause of this plume is a combination of reductive dissolution in coastal sediments, wind-driven upwelling, advection, biological uptake, and remineralization. Additional processes that are discussed as sources of metals to the regions studied during this thesis include isopycnal uplift within cold-core eddies (Hawaii), ice melt (McMurdo Sound, Antarctica), riverine input (Arctic Ocean), and winter mixing (McMurdo Sound). The biological influence on surface ocean distributions of cobalt was apparent by the observation of linear relationships between cobalt and phosphate in mid to low latitudes. The cobalt:phosphate ratios derived from these correlations changed over orders of magnitude, revealing dynamic variability in the utilization, demand, and sources of this micronutrient. Speciation studies suggest that there may be two classes of cobalt binding ligands, and that organic complexation plays an important role in preventing scavenging of cobalt in the ocean. These datasets provided a basis for comparing the biogeochemical cycles of cobalt, iron, and manganese in three oceanic regimes (Hawaii, South Atlantic, McMurdo Sound). The relative rates of scavenging for these metals show environmental variability: in the South Atlantic, cobalt, iron, and manganese were scavenged at very different rates, but in the Ross Sea, mixing and circulation over the shallow sea was fast, scavenging played a minor role, and the cycles of all three metals were coupled. Studying the distributions of these metals in biogeochemically distinct regions is a step toward a better understanding of their oceanic cycles.Funding for this research was provided by the the National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-0732665, OCE-0440840, OCE-0327225), the Center for Microbial Research and Education, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute, WHOI Academic Programs Office, and a Fye Teaching Fellowship

    Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 2715-2739, doi:10.5194/bg-14-2715-2017.Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.We also gratefully acknowledge support of funding agencies on the following grants: the US National Science Foundation (NSF-OCE 0928414, 1233261, 1435056) and the Gordon and Betty Moore Foundation (grant 3738)

    A seasonal study of dissolved cobalt in the Ross Sea, Antarctica : micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 4059-4082, doi:10.5194/bg-7-4059-2010.We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005–2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO43−), with dCo and PO43− showing a significant correlation throughout the water column (r2 = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from ~45–85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (~30 pM dCo), with concentrations as low as 20 pM observed in some regions where PO43− was depleted to ~0.1 μM. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 μmol Co:mol−1 PO43− calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co:PO43−/Zn:PO43− ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co:PO43− relationship was in contrast to Zn:PO43− and Cd:PO43− kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd:PO43− kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy.This research was supported by the US National Science Foundation through research grants (OPP-0440840, OPP-0338097, OPP-0732665, OCE-0452883, OCE-0752991, OCE-0928414)

    The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marshall, T., Granger, J., Casciotti, K. L., Dahnke, K., Emeis, K.-C., Marconi, D., McIlvin, M. R., Noble, A. E., Saito, M. A., Sigman, D. M., & Fawcett, S. E. The Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean. Communications Earth & Environment, 3(1), (2022): 151, https://doi.org/10.1038/s43247-022-00474-x.Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.This work was supported by the South African National Research Foundation (114673 and 130826 to T.M., 115335, 116142 and 129320 to S.E.F.); the US National Science Foundation (CAREER award, OCE-1554474 to J.G., OCE-1736652 to D.M.S. and K.L.C., OCE-05-26277 to K.L.C.); the German Federal Agency for Education and Research (DAAD-SPACES 57371082 to T.M.); the Royal Society (FLAIR fellowship to S.E.F.); and the University of Cape Town (T.M., J.G., S.E.F.). The authors also recognize the support of the South African Department of Science and Innovation’s Biogeochemistry Research Infrastructure Platform (BIOGRIP)

    Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 2715-2739, doi:10.5194/bg-14-2715-2017.Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.We also gratefully acknowledge support of funding agencies on the following grants: the US National Science Foundation (NSF-OCE 0928414, 1233261, 1435056) and the Gordon and Betty Moore Foundation (grant 3738)

    Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute

    Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L16608, doi:10.1029/2011GL048315.Dinitrogen (N2) fixation is recognized as an important input of new nitrogen (N) to the open ocean gyres, contributing to the export of organic matter from surface waters. However, very little N2-fixation research has focused on the South Atlantic Gyre, where dust deposition of iron (Fe), an important micronutrient for diazotrophs, is seasonally low. Recent modeling efforts suggest that N2-fixation may in fact be closely coupled to, and greatest in, areas of denitrification, as opposed to the oceanic gyres. One of these areas, the Benguela Upwelling System, lies to the east of the South Atlantic Gyre. In this study we show that N2-fixation in surface waters across the South Atlantic Gyre was low overall (<1.5 nmol N l−1 d−1) with highest rates seen in or near the Benguela Upwelling System (up to ∼8 nmol N l−1 d−1). Surface water dissolved Fe (dFe) concentrations were very low in the gyre (∼0.3 nM or lower), while soluble reactive phosphorus (SRP) concentrations were relatively high (∼0.15 μM). N2-fixation rates across the entire sampling area were significantly positively correlated to dFe, but also to SRP and NO3−. Thus, high NO3− concentrations did not exclude N2-fixation in the upwelling region, which provides evidence that N2-fixation may be occurring in previously unrecognized waters, specifically near denitrification zones. However the gene encoding for a nitrogenase component (nifH) was not detected from known diazotrophs at some stations in or near the upwelling where N2-fixation was greatest, suggesting the presence of unknown diazotrophs in these waters.Funding for this research was provided by NSF grants OCE‐0452883 (to E.A.W. and M.A.S.), OCE‐0825922 (to E.A.W.), and The Gordon and Betty Moore Foundation (JPZ)

    Cobalt, manganese, and iron near the Hawaiian Islands : a potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1473-1490, doi:10.1016/j.dsr2.2008.02.010.The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt (n =147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale coldcore eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ~100m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization (Benitez-Nelson et al. 2007). There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (~0.5nM) in surface waters relative to the iron depleted waters of the surrounding Pacific (Fitzwater et al. 1996), possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400 to 600m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.This research was supported by NSF Grants OCE-0327225, OCE-0452883, OPP-0440840, the Office of Naval Research, the Center for Environmental Bioinorganic Chemistry at Princeton, and the Center for Microbial Oceanography and Education

    More than one way of being a moa: differences in leg bone robustness map divergent evolutionary trajectories in Dinornithidae and Emeidae (Dinornithiformes).

    Get PDF
    The extinct moa of New Zealand included three families (Megalapterygidae; Dinornithidae; Emeidae) of flightless palaeognath bird, ranging in mass from 200 kg. They are perceived to have evolved extremely robust leg bones, yet current estimates of body mass have very wide confidence intervals. Without reliable estimators of mass, the extent to which dinornithid and emeid hindlimbs were more robust than modern species remains unclear. Using the convex hull volumetric-based method on CT-scanned skeletons, we estimate the mass of a female Dinornis robustus (Dinornithidae) at 196 kg (range 155-245 kg) and of a female Pachyornis australis (Emeidae) as 50 kg (range 33-68 kg). Finite element analysis of CT-scanned femora and tibiotarsi of two moa and six species of modern palaeognath showed that P. australis experienced the lowest values for stress under all loading conditions, confirming it to be highly robust. In contrast, stress values in the femur of D. robustus were similar to those of modern flightless birds, whereas the tibiotarsus experienced the highest level of stress of any palaeognath. We consider that these two families of Dinornithiformes diverged in their biomechanical responses to selection for robustness and mobility, and exaggerated hindlimb strength was not the only successful evolutionary pathway
    corecore