304 research outputs found

    Using Playbooks to Guide Leadership Transitions in Voluntary Groups and Community Organizations

    Get PDF
    Leadership changes can result in confusion for voluntary groups or community organizations. Traditionally, new leaders have received board training or been expected to learn by doing or reviewing existing policies. The National Association of Community Development Extension Professionals (NACDEP) took a new approach, with those in leadership roles developing playbooks to guide incoming leaders. The process has proved to be successful for NACDEP and is now being replicated by other organizations

    GATA: a graphic alignment tool for comparative sequence analysis

    Get PDF
    BACKGROUND: Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dot plot analysis is often used to estimate non-coding sequence relatedness. Yet dot plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments. RESULTS: To address some of these issues, we created a stand alone, platform independent, graphic alignment tool for comparative sequence analysis (GATA ). GATA uses the NCBI-BLASTN program and extensive post-processing to identify all small sub-alignments above a low cut-off score. These are graphed as two shaded boxes, one for each sequence, connected by a line using the coordinate system of their parent sequence. Shading and colour are used to indicate score and orientation. A variety of options exist for querying, modifying and retrieving conserved sequence elements. Extensive gene annotation can be added to both sequences using a standardized General Feature Format (GFF) file. CONCLUSIONS: GATA uses the NCBI-BLASTN program in conjunction with post-processing to exhaustively align two DNA sequences. It provides researchers with a fine-grained alignment and visualization tool aptly suited for non-coding, 0–200 kb, pairwise, sequence analysis. It functions independent of sequence feature ordering or orientation, and readily visualizes both large and small sequence inversions, duplications, and segment shuffling. Since the alignment is visual and does not contain gaps, gene annotation can be added to both sequences to create a thoroughly descriptive picture of DNA conservation that is well suited for comparative sequence analysis

    Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool

    Get PDF
    The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process

    The Use of Social Media by Alleged Members of Mexican Cartels and Affiliated Drug Trafficking Organizations

    Get PDF
    Focusing on Mexican cartels and affiliated drug trafficking organizations, this article examines how self-proclaimed cartel members use social media to further the criminal activities of their organizations. Employing an opensource, intelligence-driven methodology, the authors identified, followed, and mapped the connections between and among 75 alleged cartel members over a period of 4 months. Results indicated that cartel members actively use Facebook to plan, organize, and communicate in real-time. These findings provide tentative validation to the utility of using open-source social media platforms to study the social structure and operations of Mexican drug cartels. Implications for law enforcement, homeland security, and the intelligence enterprise are discussed

    Understanding your water test report (1995)

    Get PDF
    "New 7/93, Reprinted 4/95/5M.""Water Quality.""Focus area : drinking water.""Published by University Extension. University of Missouri-Columbia.""Reviewed and adapted for Missouri by Wanda Eubank, Jerry Carpenter, Bev Maltsberger, University of Missouri-Columbia, and Nix Anderson, Missouri Department of Health, from Understanding Your Water Test Report by Michael H. Bradshaw, Health and Safety Extension Specialist and G. Morgan Powell, Natural Resource Engineer, Kansas State University.

    Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ubiquitin (E3) ligases interact with specific ubiquitin conjugating (E2) enzymes to ubiquitinate particular substrate proteins. As the combination of E2 and E3 dictates the type and biological consequence of ubiquitination, it is important to understand the basis of specificity in E2:E3 interactions. The E3 ligase CHIP interacts with Hsp70 and Hsp90 and ubiquitinates client proteins that are chaperoned by these heat shock proteins. CHIP interacts with two types of E2 enzymes, UbcH5 and Ubc13-Uev1a. It is unclear, however, why CHIP binds these E2 enzymes rather than others, and whether CHIP interacts preferentially with UbcH5 or Ubc13-Uev1a, which form different types of polyubiquitin chains.</p> <p>Results</p> <p>The 2.9 Å crystal structure of the CHIP U-box domain complexed with UbcH5a shows that CHIP binds to UbcH5 and Ubc13 through similar specificity determinants, including a key S-P-A motif on the E2 enzymes. The determinants make different relative contributions to the overall interactions between CHIP and the two E2 enzymes. CHIP undergoes auto-ubiquitination by UbcH5 but not by Ubc13-Uev1a. Instead, CHIP drives the formation of unanchored polyubiquitin by Ubc13-Uev1a. CHIP also interacts productively with the class III E2 enzyme Ube2e2, in which the UbcH5- and Ubc13-binding specificity determinants are highly conserved.</p> <p>Conclusion</p> <p>The CHIP:UbcH5a structure emphasizes the importance of specificity determinants located on the long loops and central helix of the CHIP U-box, and on the N-terminal helix and loops L4 and L7 of its cognate E2 enzymes. The S-P-A motif and other specificity determinants define the set of cognate E2 enzymes for CHIP, which likely includes several Class III E2 enzymes. CHIP's interactions with UbcH5, Ube2e2 and Ubc13-Uev1a are consistent with the notion that Ubc13-Uev1a may work sequentially with other E2 enzymes to carry out K63-linked polyubiquitination of CHIP substrates.</p
    corecore