44 research outputs found

    E-cigarettes and urologic health: a collaborative review of toxicology, epidemiology, and potential risks

    Get PDF
    Context: Use of electronic cigarettes (ECs) is on the rise in most high-income countries. Smoking conventional cigarettes is a known risk factor for urologic malignancy incidence, progression, and mortality, as well as for other urologic health indicators. The potential impact of EC use on urologic health is therefore of clinical interest to the urology community. Objective: To review the available data on current EC use, including potential benefits in urologic patients, potential issues linked to toxicology of EC constituents, and how this might translate into urologic health risks. Evidence acquisition: A Medline search was carried out in August 2016 for studies reporting urologic health outcomes and EC use. Snowballing techniques were also used to identify relevant studies from recent systematic reviews. A narrative synthesis of data around EC health outcomes, toxicology, and potential use in smoking cessation and health policy was carried out. Evidence synthesis: We found no studies to date that have been specifically designed to prospectively assess urologic health risks, even in an observational setting. Generating such data would be an important contribution to the debate on the role of ECs in public health and clinical practice. There is evidence from a recent Cochrane review of RCTs that ECs can support smoking cessation. There are emerging data indicating that potentially harmful components of ECs such as tobacco-specific nitrosamines, polyaromatic hydrocarbons, and heavy metals could be linked to possible urologic health risks. Conclusions: ECs might be a useful tool to encourage cessation of conventional cigarette smoking. However, data collection around the specific impact of ECs on urologic health is needed to clarify the possible patient benefits, outcomes, and adverse events. Patient summary: While electronic cigarettes might help some people to stop smoking, their overall impact on urologic health is not clear. While electronic cigarettes might help some people to stop smoking, it is not clear if they may be bad for urologic health

    The relation between smokeless tobacco and cancer in Northern Europe and North America. A commentary on differences between the conclusions reached by two recent reviews

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smokeless tobacco is an alternative for smokers who want to quit but require nicotine. Reliable evidence on its effects is needed. Boffetta et al. and ourselves recently reviewed the evidence on cancer, based on Scandinavian and US studies. Boffetta et al. claimed a significant 60–80% increase for oropharyngeal, oesophageal and pancreatic cancer, and a non-significant 20% increase for lung cancer, data for other cancers being "too sparse". We found increases less than 15% for oesophageal, pancreatic and lung cancer, and a significant 36% increase for oropharyngeal cancer, which disappeared in recent studies. We found no association with stomach, bladder and all cancers combined, using data as extensive as that for oesophageal, pancreatic and lung cancer. We explain these differences.</p> <p>Methods</p> <p>For those cancers Boffetta et al. considered, we compared the methods, studies and risk estimates used in the two reviews.</p> <p>Results</p> <p>One major reason for the difference is our more consistent approach in choosing between study-specific never smoker and combined smoker/non-smoker estimates. Another is our use of derived as well as published estimates. We included more studies, and avoided estimates for data subsets. Boffetta et al. also included some clearly biased or not smoking-adjusted estimates. For pancreatic cancer, their review included significantly increased never smoker estimates in one study and combined smoker/non-smoker estimates in another, omitting a combined estimate in the first study and a never smoker estimate in the second showing no increase. For oesophageal cancer, never smoker results from one study showing a marked increase for squamous cell carcinoma were included, but corresponding results for adenocarcinoma and combined smoker/non-smoker results for both cell types showing no increase were excluded. For oropharyngeal cancer, Boffetta et al. included a markedly elevated estimate that was not smoking-adjusted, and overlooked the lack of association in recent studies.</p> <p>Conclusion</p> <p>When conducting meta-analyses, all relevant data should be used, with clear rules governing the choice between alternative estimates. A systematic meta-analysis using pre-defined procedures and all relevant data gives a lower estimate of cancer risk from smokeless tobacco (probably 1–2% of that from smoking) than does the previous review by Boffetta et al.</p

    Risks of serious complications and death from smallpox vaccination: A systematic review of the United States experience, 1963–1968

    Get PDF
    BACKGROUND: The United States (US) has re-instituted smallpox vaccinations to prepare for an intentional release of the smallpox virus into the civilian population. In an outbreak, people of all ages will be vaccinated. To prepare for the impact of large-scale ring and mass vaccinations, we conducted a systematic review of the complication and mortality risks of smallpox vaccination. We summarized these risks for post-vaccinial encephalitis, vaccinia necrosum (progressive vaccinia), eczema vaccinatum, generalized vaccinia, and accidental infection (inadvertant autoinoculation). METHODS: Using a MEDLINE search strategy, we identified 348 articles, of which seven studies met our inclusion criteria (the number of primary vaccinations and re-vaccinations were reported, sufficient data were provided to calculate complication or case-fatality risks, and comparable case definitions were used). For each complication, we estimated of the complication, death, and case-fatality risks. RESULTS: The life-threatening complications of post-vaccinial encephalitis and vaccinia necrosum were at least 3 and 1 per million primary vaccinations, respectively. Twenty-nine percent of vaccinees with post-vaccinial encephalitis died and 15% with vaccinia necrosum died. There were no deaths among vaccinees that developed eczema vaccinatum; however, 2.3% of non-vaccinated contacts with eczema vaccinatum died. Among re-vaccinees, the risk of post-vaccinial encephalitis was reduced 26-fold, the risk of generalized vaccinia was reduced 29-fold, and the risk of eczema vaccinatum was reduced 12-fold. However, the risk reductions of accidental infection and vaccinia necrosum were modest (3.8 and 1.5 fold respectively)

    The Case in Favor of E-Cigarettes for Tobacco Harm Reduction

    No full text
    A carefully structured Tobacco Harm Reduction (THR) initiative, with e-cigarettes as a prominent THR modality, added to current tobacco control programming, is the most feasible policy option likely to substantially reduce tobacco-attributable illness and death in the United States over the next 20 years. E-cigarettes and related vapor products are the most promising harm reduction modalities because of their acceptability to smokers. There are about 46 million smokers in the United States, and an estimated 480,000 deaths per year attributed to cigarette smoking. These numbers have been essentially stable since 2004. Currently recommended pharmaceutical smoking cessation protocols fail in about 90% of smokers who use them as directed, even under the best of study conditions, when results are measured at six to twelve months. E-cigarettes have not been attractive to non-smoking teens or adults. Limited numbers non-smokers have experimented with them, but hardly any have continued their use. The vast majority of e-cigarette use is by current smokers using them to cut down or quit cigarettes. E-cigarettes, even when used in no-smoking areas, pose no discernable risk to bystanders. Finally, addition of a THR component to current tobacco control programming will likely reduce costs by reducing the need for counseling and drugs

    What Drives Tobacco Control Policy?

    No full text

    Preventive Medicine and Public Health Residency Training

    No full text
    corecore