46 research outputs found

    Technology and market perspective for indoor photovoltaic cells

    Get PDF
    Indoor photovoltaic cells have the potential to power the Internet of Things ecosystem, including distributed and remote sensors, actuators, and communications devices. As the power required to operate these devices continues to decrease, the type and number of nodes that can now be persistently powered by indoor photovoltaic cells are rapidly growing. This will drive significant growth in the demand for indoor photovoltaics, creating a large alternative market for existing and novel photovoltaic technologies. With the re-emergence of interest in indoor photovoltaic cells, we provide an overview of this burgeoning field focusing on the technical challenges that remain to create energy autonomous sensors at viable price points and to overcome the commercial challenges for individual photovoltaic technologies to accelerate their market adoption

    Reflexões sobre a implementação da pesquisa do professor em uma proposta colaborativa

    Get PDF
    O presente artigo apresenta parte dos resultados de minha pesquisa de doutorado em que, dentre outros aspectos, enfocamos a pesquisa do professor produzida numa proposta colaborativa entre universidade e escola. Nos limites desse artigo enfocaremos, de modo breve, o trabalho de uma professora de Ciências a partir dos seus relatórios produzidos durante a sua participação nessa proposta. Através desses textos temos indícios do árduo processo metodológico de uma professora pesquisadora na prática do processo reflexivo sobre a ação. Percebe-se que todo o processo de pesquisa do professor passa, antes de tudo, por processos de apropriação daquilo que o professor julga adequado/apropriado nas suas práticas

    Identification of the gC1qR sites for the HIV-1 viral envelope protein gp41 and the HCV core protein: Implications in viral-specific pathogenesis and therapy

    Get PDF
    A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host’s immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4+ T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies

    Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019

    Get PDF
    Background: Updated data on chronic respiratory diseases (CRDs) are vital in their prevention, control, and treatment in the path to achieving the third UN Sustainable Development Goals (SDGs), a one-third reduction in premature mortality from non-communicable diseases by 2030. We provided global, regional, and national estimates of the burden of CRDs and their attributable risks from 1990 to 2019. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we estimated mortality, years lived with disability, years of life lost, disability-adjusted life years (DALYs), prevalence, and incidence of CRDs, i.e. chronic obstructive pulmonary disease (COPD), asthma, pneumoconiosis, interstitial lung disease and pulmonary sarcoidosis, and other CRDs, from 1990 to 2019 by sex, age, region, and Socio-demographic Index (SDI) in 204 countries and territories. Deaths and DALYs from CRDs attributable to each risk factor were estimated according to relative risks, risk exposure, and the theoretical minimum risk exposure level input. Findings: In 2019, CRDs were the third leading cause of death responsible for 4.0 million deaths (95% uncertainty interval 3.6–4.3) with a prevalence of 454.6 million cases (417.4–499.1) globally. While the total deaths and prevalence of CRDs have increased by 28.5% and 39.8%, the age-standardised rates have dropped by 41.7% and 16.9% from 1990 to 2019, respectively. COPD, with 212.3 million (200.4–225.1) prevalent cases, was the primary cause of deaths from CRDs, accounting for 3.3 million (2.9–3.6) deaths. With 262.4 million (224.1–309.5) prevalent cases, asthma had the highest prevalence among CRDs. The age-standardised rates of all burden measures of COPD, asthma, and pneumoconiosis have reduced globally from 1990 to 2019. Nevertheless, the age-standardised rates of incidence and prevalence of interstitial lung disease and pulmonary sarcoidosis have increased throughout this period. Low- and low-middle SDI countries had the highest age-standardised death and DALYs rates while the high SDI quintile had the highest prevalence rate of CRDs. The highest deaths and DALYs from CRDs were attributed to smoking globally, followed by air pollution and occupational risks. Non-optimal temperature and high body-mass index were additional risk factors for COPD and asthma, respectively. Interpretation: Albeit the age-standardised prevalence, death, and DALYs rates of CRDs have decreased, they still cause a substantial burden and deaths worldwide. The high death and DALYs rates in low and low-middle SDI countries highlights the urgent need for improved preventive, diagnostic, and therapeutic measures. Global strategies for tobacco control, enhancing air quality, reducing occupational hazards, and fostering clean cooking fuels are crucial steps in reducing the burden of CRDs, especially in low- and lower-middle income countries

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Beyond self-assembly: Mergeable nervous systems, spatially targeted communication, and supervised morphogenesis for autonomous robots

    No full text
    The study of self-assembling robots represents a promising strand within the emerging field of modular robots research. Self-assembling robots have the potential to autonomously adapt their bodies to new tasks and changing environments long after their initial deployment by forming new or reorganizing existing physical connections to peer robots. In previous research, many approaches have been presented to enable self-assembling robots to form composite morphologies. Recent technological advances have also increased the number of robots able to form such morphologies by at least two orders of magnitude. However, to date, composite robot morphologies have not been able to solve real-world tasks nor have they been able to adapt to changing conditions entirely without human assistance or prior knowledge.In this thesis, we identify three reasons why self-assembling robots may not have been able to fully unleash their potential and propose appropriate solutions. First, composite morphologies are not able to show sensorimotor coordination similar to those seen in their monolithic counterparts. We propose "mergeable nervous systems" -- a novel methodology that unifies independent robotic units into a single holistic entity at the control level. Our experiments show that mergeable nervous systems can enable self-assembling robots to demonstrate feats that go beyond those seen in any engineered or biological system. Second, no proposal has been tabled to enable a robot in a decentralized multirobot system select its communication partners based on their location. We propose a new form of highly scalable mechanism to enable "spatially targeted communication" in such systems. Third, the question of when and how to trigger a self-assembly process has been ignored by researchers to a large extent. We propose "supervised morphogenesis" -- a control methodology that is based on spatially targeted communication and enables cooperation between aerial and ground-based self-assembling robots. We show that allocating self-assembly related decision-making to a robot with an aerial perspective of the environment can allow robots on the ground to operate in entirely unknown environments and to solve tasks that arise during mission time. For each of the three propositions put forward in this thesis, we present results of extensive experiments carried out on real robotic hardware. Our results confirm that we were able to substantially advance the state of the art in self-assembling robots by unleashing their potential for morphological adaptation through enhanced sensorimotor coordination and by improving their overall autonomy through cooperation with aerial robots.Doctorat en Sciences de l'ingénieur et technologieinfo:eu-repo/semantics/nonPublishe
    corecore