1,606 research outputs found

    Study of Apollo water impact. Volume 8 - Unsymmetric shells of revolution analysis Final report

    Get PDF
    Numerical analysis of static, and dynamic shell response to water impact load

    Capturing Males of Pestiferous Fruit Flies (Diptera: Tephritidae): Is the Combination of Triple-Lure Wafers and Insecticidal Strips as Effective as Standard Treatments?

    Get PDF
    The detection of invasive tephritid fruit fly pests relies primarily on traps baited with male-specific lures. Three different male lures are typically used, and accordingly three sets of traps are deployed: those baited with liquid methyl eugenol (ME) or liquid cue lure (CL) for different Bactrocera species and those baited with plug-bearing trimedlure (TML) for Ceratitis species. The liquid lures contain the insecticide naled, whereas the trimedlure plugs contain no toxicant. Preparing the liquid solutions and servicing three types of traps requires consid- erable labor, and handling naled (and possibly ME) introduces potential health risks. The purpose of this study was to compare the effectiveness of Jackson traps baited with a solid dispenser (wafer) containing all three male lures plus a separate insecticidal (DDVP; 2, 2-dichlorovinyl dimethyl phosphate) strip with Jackson traps baited with the standard male lure/toxicant combinations. Trapping was conducted during two 12-week periods in a coffee field on Oahu, Hawaii. The effectiveness of the wafer-baited traps varied among different species. Catch of Bactrocera dorsalis (Hendel) males was similar between wafer-baited and liquid ME-baited traps for both sampling periods. Conversely, traps baited with the standard TML plug captured significantly more Ceratitis capitata (Wiedemann) males than the wafer-baited traps in both sampling periods. The relative effectiveness of the two trap treatments varied between sampling periods for Bactrocera cucurbitae (Coquillett) males. Based on these results, the triple-lure wafer plus separate kill strip does not, at present, appear to be a viable substitute for the male lure/toxicant combinations currently in use

    Basic properties of three-leg Heisenberg tube

    Full text link
    We study three-leg antiferromagnetic Heisenberg model with the periodic boundary conditions in the rung direction. Since the rungs form regular triangles, spin frustration is induced. We use the density-matrix renormalization group method to investigate the ground state. We find that the spin excitations are always gapped to remove the spin frustration as long as the rung coupling is nonzero. We also visibly confirm spin-Peierls dimerization order in the leg direction. Both the spin gap and the dimerization order are basically enhanced as the rung coupling increases.Comment: 4 pages, 2 figure

    Redescription of the \u3ci\u3eAllomyia renoa\u3c/i\u3e (Milne) female and association and description of the male and larva (Trichoptera: Apataniidae)

    Get PDF
    Allomyia renoa (Milne, 1935) (Trichoptera: Apataniidae) was described from six females. The male association is verified in this paper. The original type locality information is limited: “Reno, Nev., ‘78, Morrison”. An Allomyia Banks population found at Mount Rose in Washoe County, Nevada, was compared to the A. renoa type material and found to be the conspecific. Figures, descriptions and distribution of male, female, pupal and larval A. renoa are provided

    Parallelization Strategies for Density Matrix Renormalization Group Algorithms on Shared-Memory Systems

    Full text link
    Shared-memory parallelization (SMP) strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.Comment: 18 pages, 9 figure

    Redescription of the \u3ci\u3eAllomyia renoa\u3c/i\u3e (Milne) female and association and description of the male and larva (Trichoptera: Apataniidae)

    Get PDF
    Allomyia renoa (Milne, 1935) (Trichoptera: Apataniidae) was described from six females. The male association is verified in this paper. The original type locality information is limited: “Reno, Nev., ‘78, Morrison”. An Allomyia Banks population found at Mount Rose in Washoe County, Nevada, was compared to the A. renoa type material and found to be the conspecific. Figures, descriptions and distribution of male, female, pupal and larval A. renoa are provided

    Study of Apollo water impact. Volume 11 - User's manual for unsymmetric shell of revolution analysis Final report

    Get PDF
    Users manual on static and dynamic computer programs on linear elastic thin shell theory - Apollo command module water impac

    Saturation field of frustrated chain cuprates: broad regions of predominant interchain coupling

    Full text link
    An efficient and precise thermodynamic method to extract the interchain coupling (IC) of spatially anisotropic 2D or 3D spin-1/2 systems from their empirical saturation field H_s (T=0) is proposed. Using density-matrix renormalization group, hard-core boson, and spin-wave theory we study how H_s is affected by an antiferromagnetic (AFM) IC between frustrated chains described in the J_1-J_2-spin model with ferromagnetic 1st and AFM 2nd neighbor in-chain exchange. A complex 3D-phase diagram has been found. For Li2CuO2 and Y2Ca2Cu5O10, we show that H_s is solely determined by the IC and predict H_s approx 61 T for the latter.Using H_s approx 55 T from our high-field pulsed measurements one reads out a weak IC for Li2CuO2 close to that from neutron scattering.Comment: 4 pages, 6 figures, slightly revised version including a slightly changed title and abstract, one new figure and an EPAPS-supplementatary part have been adde

    Phase diagram of the one-dimensional Hubbard model with next-nearest-neighbor hopping

    Full text link
    We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.Comment: 11 pages, 8 figure
    corecore