7 research outputs found

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    No full text
    Background: Canakinumab is a human anti-interleukin-1 beta (IL-1 beta) monoclonal antibody neutralizing IL-1 beta-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA)

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    No full text
    BACKGROUND: Canakinumab is a human anti-interleukin-1β (IL-1β) monoclonal antibody neutralizing IL-1β-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA). METHODS: Gene expression was measured in patients with febrile SJIA and in matched healthy controls by Affymetrix DNA microarrays. Transcriptional response was assessed by gene expression changes from baseline to day 3 using adapted JIA American College of Rheumatology (aACR) response criteria (50 aACR JIA). Changes in pro-inflammatory cytokines IL-6 and IL-18 were assessed up to day 197. RESULTS: Microarray analysis identified 984 probe sets differentially expressed (≥2-fold difference; P < 0.05) in patients versus controls. Over 50% of patients with ≥50 aACR JIA were recognizable by baseline expression values. Analysis of gene expression profiles from patients achieving ≥50 aACR JIA response at day 15 identified 102 probe sets differentially expressed upon treatment (≥2-fold difference; P < 0.05) on day 3 versus baseline, including IL-1β, IL-1 receptors (IL1-R1 and IL1-R2), IL-1 receptor accessory protein (IL1-RAP), and IL-6. The strongest clinical response was observed in patients with higher baseline expression of dysregulated genes and a strong transcriptional response on day 3. IL-6 declined by day 3 (≥8-fold decline; P < 0.0001) and remained suppressed. IL-18 declined on day 57 (≥1.5-fold decline, P ≤ 0.002). CONCLUSIONS: Treatment with canakinumab in SJIA patients resulted in downregulation of innate immune response genes and reductions in IL-6 and clinical symptoms. Additional research is needed to investigate potential differences in the disease mechanisms in patients with heterogeneous gene transcription profiles. TRIAL REGISTRATION: Clinicaltrials.gov: NCT00886769 (trial 1). Registered on 22 April 2009; NCT00889863 (trial 2). Registered on 21 April 2009

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    Get PDF
    BACKGROUND: Canakinumab is a human anti-interleukin-1β (IL-1β) monoclonal antibody neutralizing IL-1β-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA). METHODS: Gene expression was measured in patients with febrile SJIA and in matched healthy controls by Affymetrix DNA microarrays. Transcriptional response was assessed by gene expression changes from baseline to day 3 using adapted JIA American College of Rheumatology (aACR) response criteria (50 aACR JIA). Changes in pro-inflammatory cytokines IL-6 and IL-18 were assessed up to day 197. RESULTS: Microarray analysis identified 984 probe sets differentially expressed (≥2-fold difference; P < 0.05) in patients versus controls. Over 50% of patients with ≥50 aACR JIA were recognizable by baseline expression values. Analysis of gene expression profiles from patients achieving ≥50 aACR JIA response at day 15 identified 102 probe sets differentially expressed upon treatment (≥2-fold difference; P < 0.05) on day 3 versus baseline, including IL-1β, IL-1 receptors (IL1-R1 and IL1-R2), IL-1 receptor accessory protein (IL1-RAP), and IL-6. The strongest clinical response was observed in patients with higher baseline expression of dysregulated genes and a strong transcriptional response on day 3. IL-6 declined by day 3 (≥8-fold decline; P < 0.0001) and remained suppressed. IL-18 declined on day 57 (≥1.5-fold decline, P ≤ 0.002). CONCLUSIONS: Treatment with canakinumab in SJIA patients resulted in downregulation of innate immune response genes and reductions in IL-6 and clinical symptoms. Additional research is needed to investigate potential differences in the disease mechanisms in patients with heterogeneous gene transcription profiles. TRIAL REGISTRATION: Clinicaltrials.gov: NCT00886769 (trial 1). Registered on 22 April 2009; NCT00889863 (trial 2). Registered on 21 April 2009

    Duplicated Enhancer Region Increases Expression of CTSB and Segregates with Keratolytic Winter Erythema in South African and Norwegian Families

    No full text
    Contains fulltext : 174194.pdf (publisher's version ) (Closed access)Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals
    corecore