84 research outputs found

    General anxiety, depression, and physical health in relation to symptoms of heart-focused anxiety- a cross sectional study among patients living with the risk of serious arrhythmias and sudden cardiac death

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To investigate the role of three distinct symptoms of heart-focused anxiety (cardio-protective <it>avoidance</it>, heart-focused <it>attention</it>, and <it>fear </it>about heart sensations) in relation to general anxiety, depression and physical health in patients referred to specialized cardio-genetics outpatient clinics in Norway for genetic investigation and counseling.</p> <p>Methods</p> <p>Participants were 126 patients (mean age 45 years, 53.5% women). All patients were at higher risk than the average person for serious arrhythmias and sudden cardiac death (SCD) because of a personal or a family history of an inherited cardiac disorder (familial long QT syndrome or hypertrophic cardiomyopathy). Patients filled in, Hospital Anxiety and Depression Scale, Short-Form 36 Health Survey, and Cardiac Anxiety Questionnaire, two weeks before the scheduled counseling session.</p> <p>Results</p> <p>The patients experienced higher levels of general anxiety than expected in the general population (mean difference 1.1 (p < 0.01)). Hierarchical regression analyses showed that avoidance and fear was independently related to general anxiety, depression, and physical health beyond relevant demographic covariates (age, gender, having children) and clinical variables (clinical diagnosis, and a recent SCD in the family). In addition to heart-focused anxiety, having a clinical diagnosis was of importance for physical health, whereas a recent SCD in the family was independently related to general anxiety and depression, regardless of disease status.</p> <p>Conclusion</p> <p>Avoidance and fear may be potentially modifiable symptoms. Because these distinct symptoms may have important roles in determining general anxiety, depression and physical health in at-risk individuals of inherited cardiac disorders, the present findings may have implications for the further development of genetic counseling for this patient group.</p

    Nest-predator prevalence along a mountain birch–alpine tundra ecotone

    Get PDF
    Dette er postprint versjonen av en artikkel publisert i Wildlife Research. Den publiserte versjonen av artikkelen kan finnes her: http://www.publish.csiro.au/paper/WR11031Context. Nest predation is a major factor influencing life history and population dynamics of ground-nesting birds. The transitions between the northern boreal mountain birch forests and the low-alpine tundra are important habitats for the willow ptarmigan, Lagopus lagopus (Linnaeus, 1758). During the past decades, these landscapes have been extensively developed with cabin resorts in southern Norway, which has led to an increased number of roads and foot paths in relatively undisturbed habitats. Aims. The aim of the present study was to investigate relative nest-predation rates in elevation gradients (ecotones) spanning from northern boreal mountain birch forests to low-alpine tundra in three locations with contrasting willow ptarmigan densities. Methods. We conducted an artificial nest study by using baited track boards (n = 108). Track boards were placed along transects (200 m) in the following three habitat types: birch forest, edge habitat and low-alpine tundra. Predator prevalence was analysed in relation to study-design variables (location, habitat, study period) and the load of human infrastructure (i.e. distance to foot paths and roads), using generalised linear mixed-effect models assuming binomial distribution for the response variable. Key results. Prevalence of avian predators was consistently high (range 38.2–85.3%), in contrast to much lower prevalence of mammalian predators (range 2.8–22.9%). Raven (Corvus corax) was the dominant nest predator, followed by hooded crow (C. cornix) and pine marten (Martes martes). Location, as contrasted by differences in willow ptarmigan density, was not significantly related to total relative predation rates. Species-specific predator prevalence was habitat specific and related to human infrastructure, but with opposite relative predation patterns between pine marten and raven. Hooded crow predation was similar across the ecotone and not related to human infrastructure. Conclusions. Predator prevalence was habitat specific and affected by human infrastructure (distance to human foot paths). Our study confirmed that human activity might alter the predation rates by generalist species in these low-alpine environments. Implications. We recommend that attractive willow ptarmigan habitat should be avoided when planning human infrastructure in alpine ecosystems. To reduce predation pressure in this ecosystem, it appears that generalist predators should be considered for management actions. Further research is needed to explain the underlying mechanism driving expansion of generalist species into alpine habitats. Such knowledge is also important in developing alternative management actions with focus other than predator control

    Fitness and fur colouration. Testing the camouflage and thermoregulation hypotheses in an Arctic mammal

    Get PDF
    Selection for crypsis has been recognized as an important ecological driver of animal colouration, whereas the relative importance of thermoregulation is more contentious with mixed empirical support. A potential thermal advantage of darker individuals has been observed in a wide range of animal species. Arctic animals that exhibit colour polymorphisms and undergo seasonal colour moults are interesting study subjects for testing the two alternative hypotheses: demographic performance of different colour morphs might be differentially affected by snow cover with a cryptic advantage for lighter morphs, or conversely by winter temperature with a thermal advantage for darker morphs. In this study, we explored whether camouflage and thermoregulation might explain differences in reproduction and survival between the white and blue colour morphs of the Arctic fox Vulpes lagopus under natural conditions. Juvenile and adult survival, breeding propensity and litter size were measured for 798 captive-bred and released or wild-born Arctic foxes monitored during an 11-year period (2007–2017) in two subpopulations in south-central Norway. We investigated the proportion of the two colour morphs and compared their demographic performance in relation to spatial variation in duration of snow cover, onset of snow season and winter temperatures. After population re-establishment, a higher proportion of blue individuals was observed among wild-born Arctic foxes compared to the proportion of blue foxes released from the captive population. Our field study provides the first evidence for an effect of colour morph on the reproductive performance of Arctic foxes under natural conditions, with a higher breeding propensity of the blue morph compared to the white one. Performance of the two colour morphs was not differentially affected by the climatic variables, except for juvenile survival. Blue morph juveniles showed a tendency for higher survival under colder winter temperatures but lower survival under warmer temperatures compared to white morph juveniles. Overall, our findings do not consistently support predictions of the camouflage or the thermoregulation hypotheses. The higher success of blue foxes suggests an advantage of the dark morph not directly related to disruptive selection by crypsis or thermoregulation. Our results rather point to physiological adaptations and behavioural traits not necessarily connected to thermoregulation, such as stress response, immune function, sexual behaviour and aggressiveness. Our findings highlight the need to explore the potential role of genetic linkage or pleiotropy in influencing the fitness of white and blue Arctic foxes as well as other species with colour polymorphisms

    Post epidemic giardiasis and gastrointestinal symptoms among preschool children in Bergen, Norway. A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A surprisingly low number of children became ill with giardiasis during the large waterborne outbreak of <it>Giardia lamblia </it>in Bergen, Norway during autumn 2004. The aim of the present study was to evaluate the prevalence of giardiasis among exposed children one year after an outbreak and compare faecal carriage of <it>Giardia </it>and abdominal symptoms among exposed versus unexposed children one year after the epidemic.</p> <p>Methods</p> <p>Children between 1 and 6 years old were recruited from the local health care centres in Bergen municipality in the period between June 2005 and January 2006. One faecal sample per child was collected and examined for presence of <it>Giardia </it>with a rapid immunoassay antigen test, and parents were asked to answer a questionnaire. A total of 513 children participated, 378 in the group exposed to contaminated water, and 135 in the in the group not exposed.</p> <p>Results</p> <p>In the exposed group eleven children had been treated for giardiasis during the epidemic and none in the unexposed group. <it>Giardia </it>positive faecal tests were found in six children, all in the exposed group, but the difference between the groups did not reach statistical significance. All six <it>Giardia </it>positive children were asymptomatic. No differences were found between the groups regarding demographic data, nausea, vomiting, different odour from stools and eructation. However, the reported scores of abdominal symptoms (diarrhoea, bloating and stomach ache) during the last year were higher in the exposed group than in the unexposed group.</p> <p>Conclusions</p> <p>A low prevalence of asymptomatic <it>Giardia </it>infection (1.7%) was found among exposed children around one year after the epidemic (1.2% overall prevalence in the study). In the present setting, pre-school children were therefore unlikely to be an important reservoir for continued transmission in the general population.</p

    Inventering av fjällräv i Sverige och Norge 2020

    Get PDF
    In 2016, the Norwegian Environment Agency (Miljødirektoratet) and the Swedish Environmental Protection Agency (Naturvårdsverket) developed a common methodology and standardized guidelines for the monitoring of arctic foxes in Scandinavia. The coordinated data collection and reporting was implemented in 2018, aiming to provide robust and unambiguous population estimates, as well as document the development in the Scandinavian arctic fox population over time. In 2020, the monitoring effort has been coordinated at all stages, from standardized data collection in the field, through quality assurance and reporting. This report presents the status for the various subpopulations (across national borders) and an overall population estimate for Scandinavia. In Norway, a monitoring program for arctic fox was established in its current form in 2003, in connection with the first arctic fox action plan. The monitoring in Norway is financed through yearly grants from the Norwegian Environment Agency. The Norwegian Institute for Nature Research (NINA) stands for expertise in prioritizing, overall national quality assurance and annual reporting, while the Norwegian Nature Inspectorate (SNO) coordinates the practical implementation of the work, divided into seven regions. In Sweden, a national monitoring program for arctic fox was established in 2018 and is coordinated by The Swedish Museum of Natural History (NRM). Since 2018, the overall national monitoring of arctic foxes in Sweden is funded by the Swedish Environmental Protection Agency and carried out by the county board (Länsstyrelsen), but a part of the field work is still financed from elsewhere and carried out by Stockholm University. According to the population model the arctic fox population in Norway and Sweden is estimated to 452 adult individuals (301-602, 95 % confidence interval) based on the last three-year period (2018-2020). The population model shows a steady growth in the population over the last 18 years. In 2020, 79 arctic fox litters were documented in Scandinavia, of which 43 in Norway and 36 in Sweden. The reproductions were spread over 16 subpopulations from Varanger (Finnmark), in the north, to Hardangervidda in the south. 51 of the litters were in cross-border areas, five were up north on the Varanger peninsula and the remaining 23 in the southern parts of Norway, of which 15 were in Finse/Hardangervidda. The number of litters and number of individuals detected from DNA (only in Norway), have previously been used as a foundation to present a yearly minimum estimate for the arctic fox population. This estimate has gone up and down depending on the abundance of rodents. The population model gives a more robust population estimate that also takes into consideration that not all individuals in a population is detected. In the arctic fox, number of litters and litter size follows the fluctuations in the rodent populations; with none, or few and small litters in bottom years, and many large litters in years with high abundance of rodents. This pattern was not so obvious this year, when large parts of the arctic fox distribution appears to have been in areas with few rodents. It’s somewhat surprising that we have so many litters in areas with few rodents. One explanation can be the intensive supplementary feeding that is carried out in several of these areas. A summary of previous years' monitoring results shows a significant growth of the arctic fox population in Scandinavia over the past 10-15 years. From 40–60 adult arctic foxes in early 2000 to about 450 today. Through management actions, we have succeeded in re-establishing subpopulations and reducing the distance between them. From Snøhetta in southern Norway, there is now a connection to the subpopulations in the east (Helags in Sweden) and in the north (Børgefjell/Borgafjäll) which continues further north to Junkeren – Vindelfjällen. The southernmost subpopulations in Norway also appear to be growing and re-establishments in intermediate mountain areas shorten the distance to other main populations such as Snøhetta – Sylan/Helags – Børgefjell/Borgafjäll. This positive trend is also confirmed by migration of arctic foxes between the subpopulations in Scandinavia. Increased migration has a self-reinforcing positive effect on the entire arctic fox population in Scandinavia, at the same time as the stability and viability of the population increases.På oppdrag fra Naturvårdsverket i Sverige og Miljødirektoratet i Norge ble det i 2016 tatt fram en felles metodikk og standardiserte retningslinjer for hvordan overvåkingen av fjellrev i Skandinavia skal gjennomføres og samordnes. Metodikken ble implementer i Sverige og Norge fra og med 2018. Mål-setningen med å harmonere de pågående overvåkingsinitiativene var å komme fram til robuste og enty-dige bestandsestimater for den Skandinaviske fjellrevbestanden og dokumentere utviklingen over tid. I 2020 er overvåkingsarbeidet samordnet i hele kjeden fra innsamling av data i felt, til kvalitetssikring og rapportering. Denne rapporten presenterer en status for de ulike delbestandene (på tvers av landegrens-ene) og et samlet bestandsestimat for Skandinavia. I Norge ble overvåkingsprogrammet for fjellrev etablert i sin nåværende form i 2003, i tilknytning til den første handlingsplanen for fjellrev. Overvåkingen har hatt en løpende finansiering gjennom årlig bevilgning fra Miljødirektoratet. Norsk institutt for naturforskning (NINA) står for den faglige priorite-ringen, overordnet kvalitetssikring og årlig rapportering, mens Statens naturoppsyn, (SNO) koordinerer den praktiske utførelsen av arbeidet i felt, fordelt på 7 regioner. Overvåkingen av fjellrev i Sverige har i sin nåværende form pågått siden 2018, koordinert av Naturhistoriska Riksmuseet (NRM). Fra og med 2018 finansieres den overgripende nasjonale overvåkingen i Sverige av Naturvårdsverket, og utføres av länsstyrelsene i Jämtland, Västerbotten og Norrbotten, men en del av det bakenforliggende feltarbeidet gjennomføres av Stockholm Universitet og finansieres fra annet hold. Fjellrevbestanden i Norge og Sverige blir i denne rapporten estimert til å være rett over 452 voksne individer (301-602, 95 % konfidensintervall) siste tre-årsperiode (2018-2020). Bestandsmodellen viser at det har vært en jevn vekst i bestanden over de siste 18 årene. I 2020 ble det dokumentert 79 ynglinger av fjellrev i Skandinavia, av disse var 43 i Norge og 36 i Sverige. Ynglingene var spredt over 16 fjell-områder fra Varangerhalvøya, i nord til Hardangervidda i Sør-Norge. Av disse var hele 51 av ynglingene i grenseoverskridende fjellområder. For øvrig ble fem ynglinger registrert på Varangerhalvøya og det ble dokumentert hele 23 fjellrev kull i de sørnorske delbestandene, hvorav 15 på Finse/Hardangervidda. Kartleggingen av antall kull og funn av DNA individer (bare i Norge), har tidligere vært brukt som grunnlag for å presentere et årlig minimumsestimat for fjellrevbestanden. Et estimat som har hoppet opp og ned med forekomstene av smågnagere. Den nye bestandsmodellen gir et mye mer robust bestandsestimat, som også tar hensyn til at ikke alle individer i oppdages i bestanden. Antall kull og kullstørrelse hos fjellrev følger svingningene i smågnagerbestandene; med ingen eller få og små kull i bunnår og mange store kull i år med mye smågnagere. Dette mønsteret er ikke like opplagt i år, da det i store deler av utbredelsen ser ut til å være bunnår for smågnagerne. Det er derfor litt over-raskende at det er såpass mange fjellrevkull også i disse områdene. Kanskje kan det forklares av de intensive støttefóringstiltakene. Sammenstillingen av dokumenterte ynglinger tilbake i tid viser at det har vært en betydelig vekst i fjellrevbestanden i Skandinavia de siste 10-15 årene. Fra et anslag på mellom 40 og 60 individer rundt år 2000, til mer enn 450 voksne individer i dag. Gjennom tiltak har man klart å reetablere, og korte inn avstanden mellom, lokale delbestander, i Midt-Skandinavia: fra Snøhetta østover til Sylan/Helags i Sverige og fra Sylan/Helags nordover til Børgefjell/Borgafjäll og videre nord til Junkeren/Vindelfjällen. Bestanden helt sør i Norge ser også ut til å være i sterk fremvekst, og reetablering i mellomliggende fjellområder korter inn avstanden til metapopulasjonen “Snøhetta-Sylan/Helags- Børgefjell/Borgafjäll”. Denne positive utviklingen bekreftes også av økt utveksling av fjellrevindivider mellom delbestandene. Økt utvandring gir en selvforsterkende positiv effekt på fjellrevbestanden i Skandinavia, samtidig som det øker bestandens robusthet og levedyktighet.På uppdrag av Naturvårdsverket i Sverige och Miljødirektoratet i Norge har en gemensam metodik och standardiserade riktlinjer för hur inventeringen av fjällräv i Skandinavien ska samordnas tagits fram. Metodiken utarbetades 2016, och implementerades i både Sverige och Norge från och med år 2018. Målsättningen är att kunna ge tillförlitliga och tydliga populationsberäkningar för den skandinaviska fjällrävspopulationen samt kunna följa utvecklingen i de olika delpopulationerna över tid. Under 2020 har det utförts samordnad standardiserad fältdatainsamling, kvalitetssäkring och rapportering vilket presenteras i denna rapport i form av en gemensam populationsberäkning för fjällräv i Skandinavien. Inventeringen i Sverige har i nuvarande form pågått sedan 2018 och koordineras av Naturhistoriska Riksmuseet (NRM). Från och med 2018 finansieras den övergripande nationella inventeringen av fjällräv med medel från Naturvårdsverket och utförs av länsstyrelserna i Jämtlands, Västerbottens samt Norrlands län men en del av det bakomliggande fältarbetet utförs av Stockholms universitet och finansieras från annat håll. I Norge etablerades ett övervakningsprogram för fjällräv i sin nuvarande form redan 2003 i anslutning till ett åtgärdsprogram för fjällräv. Övervakningen i Norge finansieras årligen av Miljødirektoratet. Norsk institutt for naturforskning (NINA) står för sakkunskapen vad gäller prioritering, övergripande kvalitetssäkring och årlig rapportering, medan Statens Naturuppsyn (SNO) samordnar det praktiska genomförandet av arbetet i fält fördelat på 7 regioner. Fjällrävspopulationen i Sverige och Norge uppskattas vara 452 vuxna individer (301-602, 95% konfi-densintervall) baserat på beståndsmodellen för den senaste treårsperioden (2018-2020). Modellen visar att det har skett en stadig tillväxt i beståndet under de senaste 18 åren. År 2020 dokumenterades 79 fjällrävsföryngringar i Skandinavien, varav 36 i Sverige och 43 i Norge. Föryngringarna var spridda över 16 fjällområden från Varangerhalvön i norr till Hardangervidda i söder. Av det totala antalet för-yngringarna fanns 51 kullar i gränsöverskridande fjällområden. Av övriga var fem längst i norr på Va-ranger och övriga 23 var fördelade över de södra delarna av utbredningsområdet i Norge med de syd-ligaste 15 på Hardangervidda (5) och Finse (10). Antal föryngringar och DNA-prov (endast i Norge) har tidigare använts som grund för att uppskatta minimumantalet av fjällrävar. Det är en uppskattning som följer smågnagarcyklerna och går väldigt mycket upp och ner. Beståndsmodellen ger däremot en mer robust fjällrävsuppskattning som även tar hänsyn till att inte alla individer upptäcks. Antal fjällrävskullar och även kullstorleken följer tydligt smågnagarcyklerna. Det innebär inga eller få och små fjällrävskullar under bottenår för smågnagare och det motsatta för toppår. Det mönstret är inte lika uppenbart i år, eftersom det i stora delar av utbredningsområdet varit ett bottenår för smågnagare men ändå har registrerats förhållandevis många fjällrävskullar. En förklaring kan vara de intensiva bevarandeåtgärderna med stödutfodring. En sammanställning av tidigare års inventeringsresultat visar på en betydande tillväxt av fjällrävspopulationen i Skandinavien under de senaste 10-15 åren. Från att uppskattas vara mellan 40 och 60 individer runt år 2000, till att det idag enligt den senaste beräkningsmodellen beräknas vara strax över 450 vuxna individer.. Genom åtgärder har man lyckats återupprätta och minska avståndet mellan lokala delpopulationer. Från Snøhetta i södra Norge finns nu mer eller mindre kontakt mellan delpopulationerna österut till Helags i Sverige och norrut till Børgefjell–Borgafjäll och vidare norr till Junkeren–Vindelfjällen. De sydligaste delbestånden i Norge ser också ut att tillväxa och återetableringar i mellanliggande fjällområden kortar avståndet till övriga huvudbestånd som Snøhetta–Sylan/Helags–Børgefjell/Borgafjäll. Denna positiva trend bekräftas även av att det har uppstått mer migration av fjällrävar mellan delpopulationerna i Skandinavien. Ökad migration ger en självförstärkande positiv effekt på hela fjällrävspopulationen i Skandinavien, samtidigt som dess stabilitet och livsduglighet ökar

    Overvåking av fjellrev i Sverige og Norge 2020

    No full text
    In 2016, the Norwegian Environment Agency (Miljødirektoratet) and the Swedish Environmental Protection Agency (Naturvårdsverket) developed a common methodology and standardized guidelines for the monitoring of arctic foxes in Scandinavia. The coordinated data collection and reporting was implemented in 2018, aiming to provide robust and unambiguous population estimates, as well as document the development in the Scandinavian arctic fox population over time. In 2020, the monitoring effort has been coordinated at all stages, from standardized data collection in the field, through quality assurance and reporting. This report presents the status for the various subpopulations (across national borders) and an overall population estimate for Scandinavia. In Norway, a monitoring program for arctic fox was established in its current form in 2003, in connection with the first arctic fox action plan. The monitoring in Norway is financed through yearly grants from the Norwegian Environment Agency. The Norwegian Institute for Nature Research (NINA) stands for expertise in prioritizing, overall national quality assurance and annual reporting, while the Norwegian Nature Inspectorate (SNO) coordinates the practical implementation of the work, divided into seven regions. In Sweden, a national monitoring program for arctic fox was established in 2018 and is coordinated by The Swedish Museum of Natural History (NRM). Since 2018, the overall national monitoring of arctic foxes in Sweden is funded by the Swedish Environmental Protection Agency and carried out by the county board (Länsstyrelsen), but a part of the field work is still financed from elsewhere and carried out by Stockholm University. According to the population model the arctic fox population in Norway and Sweden is estimated to 452 adult individuals (301-602, 95 % confidence interval) based on the last three-year period (2018-2020). The population model shows a steady growth in the population over the last 18 years. In 2020, 79 arctic fox litters were documented in Scandinavia, of which 43 in Norway and 36 in Sweden. The reproductions were spread over 16 subpopulations from Varanger (Finnmark), in the north, to Hardangervidda in the south. 51 of the litters were in cross-border areas, five were up north on the Varanger peninsula and the remaining 23 in the southern parts of Norway, of which 15 were in Finse/Hardangervidda. The number of litters and number of individuals detected from DNA (only in Norway), have previously been used as a foundation to present a yearly minimum estimate for the arctic fox population. This estimate has gone up and down depending on the abundance of rodents. The population model gives a more robust population estimate that also takes into consideration that not all individuals in a population is detected. In the arctic fox, number of litters and litter size follows the fluctuations in the rodent populations; with none, or few and small litters in bottom years, and many large litters in years with high abundance of rodents. This pattern was not so obvious this year, when large parts of the arctic fox distribution appears to have been in areas with few rodents. It’s somewhat surprising that we have so many litters in areas with few rodents. One explanation can be the intensive supplementary feeding that is carried out in several of these areas. A summary of previous years' monitoring results shows a significant growth of the arctic fox population in Scandinavia over the past 10-15 years. From 40–60 adult arctic foxes in early 2000 to about 450 today. Through management actions, we have succeeded in re-establishing subpopulations and reducing the distance between them. From Snøhetta in southern Norway, there is now a connection to the subpopulations in the east (Helags in Sweden) and in the north (Børgefjell/Borgafjäll) which continues further north to Junkeren – Vindelfjällen. The southernmost subpopulations in Norway also appear to be growing and re-establishments in intermediate mountain areas shorten the distance to other main populations such as Snøhetta – Sylan/Helags – Børgefjell/Borgafjäll. This positive trend is also confirmed by migration of arctic foxes between the subpopulations in Scandinavia. Increased migration has a self-reinforcing positive effect on the entire arctic fox population in Scandinavia, at the same time as the stability and viability of the population increases

    Effects of disturbance on geese in Svalbard: implications for regulating increasing tourism

    No full text
    Tourism in the Arctic archipelago of Svalbard, Norway, has increased significantly in the last decade. Cruise ships make landings all around the archipelago, and there are numerous snowmobile, boat and hiking excursions. We describe disturbance effects on the three geese species that breed in Svalbard: the pink-footed goose (Anser brachyrhynchus), the barnacle goose (Branta leucopsis) and the light-bellied brent goose (Branta bernicla hrota). All three are regarded as highly vulnerable to disturbance. Behavioural responses by geese to humans on foot were analysed by estimating the distances at which geese become alerted, the escape flight distances and the length of escape flights, during pre-nesting, nesting and brood-rearing periods. We evaluate the consequences of human intrusion on the reproductive success in breeding colonies. During all three phases, pink-footed geese responded at longer ranges, and flew/ran longer distances, than both brent and barnacle geese: when disturbed on the nest site, both male and female pink-footed geese flew far away, resulting in a high rate of nest loss to avian predators (35%), compared with the 4 and 0% losses among barnacle and brent geese, respectively. During brood rearing, families of pink-footed geese escaped at an average distance of 1717 m, compared with distances of 620 and 330 m for brent and barnacle geese, respectively. Even though bird sanctuaries have been established on several islets, with no human access during nesting, many core areas for the three species remain without restrictions, such as islets used by brent geese and slopes and valleys with nesting pink-footed geese, broodrearing areas and moulting grounds for non-breeding geese. We propose regulations of human access to goose concentration areas, and address the need to better protect these significant areas. We also discuss the need for further research on the vulnerability of geese to human activity

    Regelverksendringer for ferdsel på Svalbard. Faglig vurdering av sårbarhet for vegetasjon

    Get PDF
    Hagen, D., Vistad, O.I. & Eide, N.E. 2020. Regelverksendringer for ferdsel på Svalbard. Faglig vurdering av sårbarhet for vegetasjon NINA Rapport 1838. Norsk institutt for naturforskning. Miljødirektoratet skal vurdere endringer i dagens miljøregelverk for besøksforvaltning på Svalbard sett i lys av relativt stor vekst i antall tilreisende siden dagens regelverk ble utarbeidet. Som del av kunskapsgrunnlaget har Norsk institutt for naturforskning (NINA) utført en ekspert-vurdering for sårbarhet av vegetasjon på Svalbard, med utgangspunkt i eksisterende kunnskap. Rapporten inneholder en generell vurdering av sårbarhet for vegetasjon på Svalbard og omtaler konsekvenser ved økt ferdsel og økt omfang av ilandstigning. Rapporten bygger på kunnskap fra prosjekter som NINA har gjennomført de siste 10 årene som omhandler ferdsel og effekter av ferdsel på vegetasjon, samt sårbarhetsvurderinger av ilandstigningslokaliteter. Vegetasjonens sensitivetet er karakterisert av slitestyrke og evne til gjenvekst. De tre viktigste enkeltfaktorene som påvirker slitestyrken, er jordas vanninnhold, innholdet av finstoff i jorda (leire og silt) og terrengets helling. Dersom det oppstår slitasje i sensitiv vegetasjon, kan det oppstå erosjon som forverres også ved opphør av bruk. Det er en rekke parametere som er egnet til å måle effekter av ferdsel på arter, vegetasjonstyper, terrengoverflate og landskap. Det foregår i dag ikke overvåking av vegetasjonsslitasje eller effekter av ferdsel på Svalbard. Forholdet mel-lom antall som ferdes og slitasjeeffekter på vegetasjon varierer mye med lokale miljøforhold. Generelt er det grunn til å tro at økt ferdsel gir økt omfang av synlig slitasje, spesielt der det er sensitiv vegetasjon, men det finnes lite data om det direkte forholdet mellom bruk og effekter på Svalbard. Kanalisering av ferdsel til stier i mye brukte lokaliteter konsentrerer slitasjen til selve stien og reduserer slitasjen utenom stien. I lokaliteter med lite ferdsel og robust vegetasjon kan spredt ferdsel hindre dannelse av stier. På Svalbard foregår en svært stor del av ferdselen i organiserte grupper og med guide, og dette gir spesielt gode forutsetninger for kanalisering eller andre former for styring av ferdselen, sammenliknet med for eksempel ferdsel i nasjonalparker på fastlandet. En stor del av barmarksferdselen på Svalbard er konsentrert til ilandstigningslokaliteter rundt kysten av hele øygruppa, og disse lokalitetene er derfor er en relevant skala for sårbarhtsvurdering. Det er utviklet en modell for sårbarhetsvurdering av ilandstigningslokaliteter som omfatter vegetasjon, dyreliv og kulturminner. Så langt er anslagsvis 50-60 ilandstigningslokaliteter på Svalbard sårbarhetsvurdert. Dette datasettet gir grunnlag for klassifisering av lokaliteter i robust, middels og sårbar og bruken av et slikt klassifikasjonssystem kan være et grunnlag for prioritering av hvor det er behov for aktive forvaltningstiltak. I rapporten beskrives det hvordan avbøtende tiltak kan redusere sårbarheten i en ilandstigningslokalitet. Det finnes mange ulike forvaltningstiltak, med regulering og forbud som de klart strengeste. Regulering eller andre former for tiltak bør ha en målbar effekt og bør oppleves som rimelige og forståelige for brukere og næringsliv for å være legitime og ikke øke konfliktnivået. Noen konkrete bidrag til kunnskapsbasert forvaltning av vegetasjon på Svalbard er a) å gjennomføre sårbarhetsvurdering av alle ilandstigningslokaliteter med årlig besøk og gruppere dem i robust, middels sårbar og sårbar, b) evaluere betydningen av stedspesifikke retningslinjer (site-specific guidelines) nå etter 10 år, c) gjennomføre effektstudier av de få ferdselstiltakene som er gjort på Svalbard, inkludert effekten av styrt og guidet ferdsel for å evaluere om tiltakene har virket etter hensikten, og d) kartlegge forekomster av sjeldne arter og vegetasjonstyper på Svalbard, med prioritering av jevnlig brukte ilandstigningslokaliteter.Hagen, D., Vistad, O.I. & Eide, N.E. 2020. Regulation of human traffic at Svalbard. Expert evaluation of vegetation vulnerability. NINA Report 1838. Norwegian Institute for Nature Research. Norwegian Environment Agency will evaluate the need for changes in the environmental regulation of visitors to Svalbard due to the increased number of visitors during the last years. As part of the evaluation the Norwegian Institute for Nature Research (NINA) has made an expert assessment of vulnerability of vegetation on Svalbard, based on existing knowledge. This report covers a general assessment of vegetation and the effects and consequences from increased number of visitors and landing sites. The report is based on the outcome from a number of projects from NINA during the last 10 years, covering topics such as human use, effects from visitors and vulnerability assessment of landing sites. The sensitivity of vegetation can be characterized by tolerance to trampling and ability to recover (resilience). The most crucial environmental factors for sensitivity are humidity, the amount of fine-grained soil, and slope. When sensitive vegetation is disturbed, this can cause erosion and further disturbance over time, even if the use stops. The effects from human trampling can be measured in different ways on single species, vegetation types, terrain, and landscape, but in general it is challenging to monitor changes in tearing of vegetation. At present there is no running monitoring program on tearing of vegetation at Svalbard. The relationship between number of visitors and effects on vegetation varies along environmental gradients. In general, increased number of visitors will cause more tearing of vegetation, in particular in sensitive areas, but there is a lack of data on the direct link between use and effect. Channelling along trails will limit the tearing to the trail itself, and reduce the tearing in other parts of the site. In sites will low number of visitors and robust vegetation the impact from trampling is smaller when the use is dispersed over a larger area. At Svalbard most visitors go in organized and guided groups, which makes channelling or other types of on-site-regulation feasible, compared to for example Norwegian mainland areas where most visitors travel individually. Summer travelling at Svalbard mainly involve landing sites along the coastline around the entire archipelago, and these sites represent the relevant scale for vulnerability assessment. A model for vulnerability assessment of landing sites is developed for vegetation, animal life and cultural remnants. So far 50-60 landing sites have been assessed. Based on this dataset the sites can be classified as robust, medium sensitive, and sensitive, and this knowledge can be the baseline for prioritizing the need for management action. This report also shows how mitigation measures can reduce the vulnerability on landing sites. Among the large number of possible management measures, regulations and closure are the most severe. The effect of regulation or any other type of measures should be possible to measure and should be considered as relevant and legitimate to visitors and the tourist industry, to reduce conflicts. Some suggested contributions to knowledge based future management of vegetation at Svalbard are: a) produce vulnerability assessments in all frequently used landing sites and classify them as robust, medium sensitive, and sensitive, b) evaluate the impact from site-specific guidelines after these now have been used for 10 years, c) evaluate the effect of the (few) implemented management measures at Svalbard, including the effect from highly organized and guided tourism, and d) map the distribution of rare plant species and vegetation types in frequently used visitor sites
    corecore