19,089 research outputs found
Comment on ``Two Time Scales and Violation of the Fluctuation-Dissipation Theorem in a Finite Dimensional Model for Structural Glasses''
In cond-mat/0002074 Ricci-Tersenghi et al. find two linear regimes in the
fluctuation-dissipation relation between density-density correlations and
associated responses of the Frustrated Ising Lattice Gas. Here we show that
this result does not seem to correspond to the equilibrium quantities of the
model, by measuring the overlap distribution P(q) of the density and comparing
the FDR expected on the ground of the P(q) with the one measured in the
off-equilibrium experiments.Comment: RevTeX, 1 page, 2 eps figures, Comment on F. Ricci-Tersenghi et al.,
Phys. Rev. Lett. 84, 4473 (2000
Novel self-assembled morphologies from isotropic interactions
We present results from particle simulations with isotropic medium range
interactions in two dimensions. At low temperature novel types of aggregated
structures appear. We show that these structures can be explained by
spontaneous symmetry breaking in analytic solutions to an adaptation of the
spherical spin model. We predict the critical particle number where the
symmetry breaking occurs and show that the resulting phase diagram agrees well
with results from particle simulations.Comment: 4 pages, 4 figure
Kinetic modelling of runaway electron avalanches in tokamak plasmas
Runaway electrons (REs) can be generated in tokamak plasmas if the
accelerating force from the toroidal electric field exceeds the collisional
drag force due to Coulomb collisions with the background plasma. In ITER,
disruptions are expected to generate REs mainly through knock-on collisions,
where enough momentum can be transferred from existing runaways to slow
electrons to transport the latter beyond a critical momentum, setting off an
avalanche of REs. Since knock-on runaways are usually scattered off with a
significant perpendicular component of the momentum with respect to the local
magnetic field direction, these particles are highly magnetized. Consequently,
the momentum dynamics require a full 3-D kinetic description, since these
electrons are highly sensitive to the magnetic non-uniformity of a toroidal
configuration. A bounce-averaged knock-on source term is derived. The
generation of REs from the combined effect of Dreicer mechanism and knock-on
collision process is studied with the code LUKE, a solver of the 3-D linearized
bounce-averaged relativistic electron Fokker-Planck equation, through the
calculation of the response of the electron distribution function to a constant
parallel electric field. This work shows that the avalanche effect can be
important even in non-disruptive scenarios. RE formation through knock-on
collisions is found to be strongly reduced when taking place off the magnetic
axis, since trapped electrons cannot contribute to the RE population. The
relative importance of the avalanche mechanism is investigated as a function of
the key parameters for RE formation; the plasma temperature and the electric
field strength. In agreement with theoretical predictions, the simulations show
that in low temperature and E-field knock-on collisions are the dominant source
of REs and can play a significant role for RE generation, including in
non-disruptive scenarios.Comment: 23 pages, 12 figure
QuantEYE: The Quantum Optics Instrument for OWL
QuantEYE is designed to be the highest time-resolution instrument on ESO:s
planned Overwhelmingly Large Telescope, devised to explore astrophysical
variability on microsecond and nanosecond scales, down to the quantum-optical
limit. Expected phenomena include instabilities of photon-gas bubbles in
accretion flows, p-mode oscillations in neutron stars, and quantum-optical
photon bunching in time. Precise timescales are both variable and unknown, and
studies must be of photon-stream statistics, e.g., their power spectra or
autocorrelations. Such functions increase with the square of the intensity,
implying an enormously increased sensitivity at the largest telescopes.
QuantEYE covers the optical, and its design involves an array of
photon-counting avalanche-diode detectors, each viewing one segment of the OWL
entrance pupil. QuantEYE will work already with a partially filled OWL main
mirror, and also without [full] adaptive optics.Comment: 7 pages; Proceedings from meeting 'Instrumentation for Extremely
Large Telescopes', held at Ringberg Castle, July 2005 (T.Herbst, ed.
Stellar properties of z ~ 1 Lyman-break galaxies from ACS slitless grism spectra
Lyman-break galaxies are now regularly found in the high redshift Universe by
searching for the break in the galaxy spectrum caused by the Lyman-limit
redshifted into the optical or even near-IR. At lower redshift, this break is
covered by the GALEX UV channels and small samples of z ~ 1 LBGs have been
presented in the literature. Here we give results from fitting the spectral
energy distributions of a small sub-set of low redshift LBGs and demonstrate
the advantage of including photometric points derived from HST ACS slitless
grism observations. The results show these galaxies to have very young, star
forming populations, while still being massive and dusty. LBGs at low and high
redshift show remarkable similarities in their properties, indicating that the
LBG selection method picks similar galaxies throughout the Universe.Comment: 7 pages, 3 figures, 2 tables, accepted in A&
Project 1640 observations of the white dwarf HD 114174 B
We present the first near infrared spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS) photometry measurements, allows us to place further constraints on this companion. We suggest two possible scenarios; either this object is an old, low-mass, cool H atmosphere white dwarf with T_(eff) ⌠3800 K or a high-mass white dwarf with T_(eff) > 6000 K, potentially with an associated cool (T_(eff) ⌠700 K) brown dwarf or debris disc resulting in an infrared excess in the LΠband. We also provide an additional astrometry point for 2014 June 12 and use the modelled companion mass combined with the radial velocity and direct imaging data to place constraints on the orbital parameters for this companion
Spatially self-similar spherically symmetric perfect-fluid models
Einstein's field equations for spatially self-similar spherically symmetric
perfect-fluid models are investigated. The field equations are rewritten as a
first-order system of autonomous differential equations. Dimensionless
variables are chosen in such a way that the number of equations in the coupled
system is reduced as far as possible and so that the reduced phase space
becomes compact and regular. The system is subsequently analysed qualitatively
with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure
Enhanced Stability of Superheavy Nuclei due to High-Spin Isomerism
Configuration-constrained calculations of potential-energy surfaces in
even-even superheavy nuclei reveal systematically the existence at low
excitation energies of multi-quasiparticle states with deformed axially
symmetric shapes and large angular momenta. These results indicate the
prevalence of long-lived, multi-quasiparticle isomers. In a quantal system, the
ground state is usually more stable than the excited states. In contrast, in
superheavy nuclei the multi-qausiparticle excitations decrease the probability
for both fission and decay, implying enhanced stability. Hence, the
systematic occurrence of multi-qausiparticle isomers may become crucial for
future production and study of even heavier nuclei. The energies of
multi-quasiparticle states and their decays are calculated and
compared to available data.Comment: 4 pages, 5 figures, accepted for publication in PR
Optics-less smart sensors and a possible mechanism of cutaneous vision in nature
Optics-less cutaneous (skin) vision is not rare among living organisms,
though its mechanisms and capabilities have not been thoroughly investigated.
This paper demonstrates, using methods from statistical parameter estimation
theory and numerical simulations, that an array of bare sensors with a natural
cosine-law angular sensitivity arranged on a flat or curved surface has the
ability to perform imaging tasks without any optics at all. The working
principle of this type of optics-less sensor and the model developed here for
determining sensor performance may be used to shed light upon possible
mechanisms and capabilities of cutaneous vision in nature
- âŠ