91 research outputs found

    DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis.

    Get PDF
    Breast cancer genomes have revealed a novel form of mutation showers (kataegis) in which multiple same-strand substitutions at C:G pairs spaced one to several hundred nucleotides apart are clustered over kilobase-sized regions, often associated with sites of DNA rearrangement. We show kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection. Cancer-like kataegis can be recapitulated by expression of AID/APOBEC family deaminases in yeast where it largely depends on uracil excision, which generates an abasic site for strand breakage. Localized kataegis can also be nucleated by an I-SceI-induced break. Genome-wide patterns of APOBEC3-catalyzed deamination in yeast reveal APOBEC3B and 3A as the deaminases whose mutational signatures are most similar to those of breast cancer kataegic mutations. Together with expression and functional assays, the results implicate APOBEC3B/A in breast cancer hypermutation and give insight into the mechanism of kataegis. DOI:http://dx.doi.org/10.7554/eLife.00534.001

    Whole-Genome Sequencing of Retinoblastoma Reveals the Diversity of Rearrangements Disrupting RB1 and Uncovers a Treatment-Related Mutational Signature.

    Get PDF
    The development of retinoblastoma is thought to require pathological genetic changes in both alleles of the RB1 gene. However, cases exist where RB1 mutations are undetectable, suggesting alternative pathways to malignancy. We used whole-genome sequencing (WGS) and transcriptomics to investigate the landscape of sporadic retinoblastomas derived from twenty patients, sought RB1 and other driver mutations and investigated mutational signatures. At least one RB1 mutation was identified in all retinoblastomas, including new mutations in addition to those previously identified by clinical screening. Ten tumours carried structural rearrangements involving RB1 ranging from relatively simple to extremely complex rearrangement patterns, including a chromothripsis-like pattern in one tumour. Bilateral tumours obtained from one patient harboured conserved germline but divergent somatic RB1 mutations, indicating independent evolution. Mutational signature analysis showed predominance of signatures associated with cell division, an absence of ultraviolet-related DNA damage and a profound platinum-related mutational signature in a chemotherapy-exposed tumour. Most RB1 mutations are identifiable by clinical screening. However, the increased resolution and ability to detect otherwise elusive rearrangements by WGS have important repercussions on clinical management and advice on recurrence risks

    Familial ACC in Lynch Syndrome

    Get PDF
    CONTEXT: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Although the majority of childhood ACC arises in the context of inherited cancer susceptibility syndromes, it remains less clear whether a hereditary tumor predisposition exists for the development of ACC in adults. Here, we report the first occurrence of familial ACC in a kindred with Lynch syndrome resulting from a pathogenic germline MSH2 mutation. CASE: A 54-year-old female with a history of ovarian and colorectal malignancy was found to have an ACC. A detailed family history revealed her mother had died of ACC and her sister had previously been diagnosed with endometrial and colorectal cancers. A unifying diagnosis of Lynch syndrome was considered, and immunohistochemical analyses demonstrated loss of MSH2 and MSH6 expression in both AACs (proband and her mother) and in the endometrial carcinoma of her sister. Subsequent genetic screening confirmed the presence of a germline MSH2 mutation (resulting in deletions of exons 1-3) in the proband and her sister. CONCLUSION: Our findings provide strong support for the recent proposal that ACC should be considered a Lynch syndrome-associated tumor and included in the Amsterdam II clinical diagnostic criteria. We also suggest that screening for ACC should be considered in cancer surveillance strategies directed at individuals with germline mutations in DNA mismatch repair genes.ASP, OK and MG are supported by the National Institutes for Health Research Cambridge Biomedical Research Centre. SNZ is a Wellcome Trust Intermediate Clinical Fellow (WT100183MA). We are grateful to Dr Joan Patterson for clinical advice and Dr Erik Schoenmakers for assistance with illustrations.This is the author accepted manuscript. The final version is available from the Endocrine Society via http://dx.doi.org/10.1210/jc.2016-146

    Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer.

    Get PDF
    The somatic mutations in a cancer genome are the aggregate outcome of one or more mutational processes operative through the lifetime of the individual with cancer. Each mutational process leaves a characteristic mutational signature determined by the mechanisms of DNA damage and repair that constitute it. A role was recently proposed for the APOBEC family of cytidine deaminases in generating particular genome-wide mutational signatures and a signature of localized hypermutation called kataegis. A germline copy number polymorphism involving APOBEC3A and APOBEC3B, which effectively deletes APOBEC3B, has been associated with modestly increased risk of breast cancer. Here we show that breast cancers in carriers of the deletion show more mutations of the putative APOBEC-dependent genome-wide signatures than cancers in non-carriers. The results suggest that the APOBEC3A-APOBEC3B germline deletion allele confers cancer susceptibility through increased activity of APOBEC-dependent mutational processes, although the mechanism by which this increase in activity occurs remains unknown.We would like to thank the Wellcome Trust for support (grant reference 098051). SN-Z is a Wellcome-Beit Prize Fellow and is supported through a Wellcome Trust Intermediate Fellowship (grant reference WT100183MA). PJC is personally funded through a Wellcome Trust Senior Clinical Research Fellowship (grant reference WT088340MA). NB is an EHA fellow and is supported by a Lady Tata Memorial Trust award. The H.L. Holmes Award from the National Research Council Canada and an EMBO Fellowship supports AS

    Two Secreted Proteoglycans, Activators of Urothelial Cell-Cell Adhesion, Negatively Contribute to Bladder Cancer Initiation and Progression.

    Get PDF
    Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer

    Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer.

    Get PDF
    BACKGROUNDGenetics of estrogen synthesis and breast cancer risk has been elusive. The 1245A→C missense-encoding polymorphism in HSD3B1, which is common in White populations, is functionally adrenal permissive and increases synthesis of the aromatase substrate androstenedione. We hypothesized that homozygous inheritance of the adrenal-permissive HSD3B1(1245C) is associated with postmenopausal estrogen receptor-positive (ER-positive) breast cancer.METHODSA prospective study of postmenopausal ER-driven breast cancer was done for determination of HSD3B1 and circulating steroids. Validation was performed in 2 other cohorts. Adrenal-permissive genotype frequency was compared between postmenopausal ER-positive breast cancer, the general population, and postmenopausal ER-negative breast cancer.RESULTSProspective and validation studies had 157 and 538 patients, respectively, for the primary analysis of genotype frequency by ER status in White female breast cancer patients who were postmenopausal at diagnosis. The adrenal-permissive genotype frequency in postmenopausal White women with estrogen-driven breast cancer in the prospective cohort was 17.5% (21/120) compared with 5.4% (2/37) for ER-negative breast cancer (P = 0.108) and 9.6% (429/4451) in the general population (P = 0.0077). Adrenal-permissive genotype frequency for estrogen-driven postmenopausal breast cancer was validated using Cambridge and The Cancer Genome Atlas data sets: 14.4% (56/389) compared with 6.0% (9/149) for ER-negative breast cancer (P = 0.007) and the general population (P = 0.005). Circulating androstenedione concentration was higher with the adrenal-permissive genotype (P = 0.03).CONCLUSIONAdrenal-permissive genotype is associated with estrogen-driven postmenopausal breast cancer. These findings link genetic inheritance of endogenous estrogen exposure to estrogen-driven breast cancer.FUNDINGNational Cancer Institute, NIH (R01CA236780, R01CA172382, and P30-CA008748); and Prostate Cancer Foundation Challenge Award

    A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage.

    Get PDF
    Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies

    A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    Get PDF
    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. The transcriptomic consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.DG is supported by the EU-FP7-SUPPRESSTEM project. SN-Z is funded by a Wellcome Trust Intermediate Fellowship (WT100183MA) and is a Wellcome Beit Fellow. For more information, please visit the publisher's website

    HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.

    Get PDF
    Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought. Recently, somatic substitution, insertion/deletion and rearrangement patterns, or 'mutational signatures', were associated with BRCA1/BRCA2 dysfunction. Herein we used a lasso logistic regression model to identify six distinguishing mutational signatures predictive of BRCA1/BRCA2 deficiency. A weighted model called HRDetect was developed to accurately detect BRCA1/BRCA2-deficient samples. HRDetect identifies BRCA1/BRCA2-deficient tumors with 98.7% sensitivity (area under the curve (AUC) = 0.98). Application of this model in a cohort of 560 individuals with breast cancer, of whom 22 were known to carry a germline BRCA1 or BRCA2 mutation, allowed us to identify an additional 22 tumors with somatic loss of BRCA1 or BRCA2 and 47 tumors with functional BRCA1/BRCA2 deficiency where no mutation was detected. We validated HRDetect on independent cohorts of breast, ovarian and pancreatic cancers and demonstrated its efficacy in alternative sequencing strategies. Integrating all of the classes of mutational signatures thus reveals a larger proportion of individuals with breast cancer harboring BRCA1/BRCA2 deficiency (up to 22%) than hitherto appreciated (∼1-5%) who could have selective therapeutic sensitivity to PARP inhibition
    corecore