212 research outputs found

    Історичне краєзнавство як складова національної освіти: теоретичний аспект

    Get PDF
    Аналізується процес утвердження історичного краєзнавства в системі національної освіти. Розглядаються теоретичні питання про предмет, об’єкт і завдання історичного краєзнавства. Акцентується увага на виховній і консолідуючій функції історичного краєзнавства в процесі відродження української нації.Анализируется процесс становления исторического краеведения в системе национального образования. Рассматриваются теоретические вопросы о предмете, объекте и задачах исторического краеведения. Внимание акцентируется на воспитательной и консолидирующей функциях исторического краеведения в процессе возрождения украинской нации.The processes of the formation of the local history studies in the system of the national education had been analyzed. The theoretical aspects of the objects and tasks of the local history studies had been shown. The educational and consolidation functions of the local history studies in the Ukrainian national resurrection process had been pointed

    Theorem on the Distribution of Short-Time Particle Displacements with Physical Applications

    Full text link
    The distribution of the initial short-time displacements of particles is considered for a class of classical systems under rather general conditions on the dynamics and with Gaussian initial velocity distributions, while the positions could have an arbitrary distribution. This class of systems contains canonical equilibrium of a Hamiltonian system as a special case. We prove that for this class of systems the nth order cumulants of the initial short-time displacements behave as the 2n-th power of time for all n>2, rather than exhibiting an nth power scaling. This has direct applications to the initial short-time behavior of the Van Hove self-correlation function, to its non-equilibrium generalizations the Green's functions for mass transport, and to the non-Gaussian parameters used in supercooled liquids and glasses.Comment: A less ambiguous mathematical notation for cumulants was adopted and several passages were reformulated and clarified. 40 pages, 1 figure. Accepted by J. Stat. Phy

    Dynamical Properties and Plasmon Dispersion of a Weakly Degenerate Correlated One-Component Plasma

    Get PDF
    Classical Molecular Dynamics (MD) simulations for a one-component plasma (OCP) are presented. Quantum effects are included in the form of the Kelbg potential. Results for the dynamical structure factor are compared with the Vlasov and RPA (random phase approximation) theories. The influence of the coupling parameter Γ\Gamma, degeneracy parameter ρΛ3\rho \Lambda^3 and the form of the pair interaction on the optical plasmon dispersion is investigated. An improved analytical approximation for the dispersion of Langmuir waves is presented.Comment: 23 pages, includes 7 ps/eps-figures and 2 table

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201

    Harmonic Solid Theory of Photoluminescence in the High Field Two-Dimensional Wigner Crystal

    Full text link
    Motivated by recent experiments on radiative recombination of two-dimensional electrons in acceptor doped GaAs-AlGaAs heterojunctions as well as the success of a harmonic solid model in describing tunneling between two-dimensional electron systems, we calculate within the harmonic approximation and the time dependent perturbation theory the line shape of the photoluminescence spectrum corresponding to the recombination of an electron with a hole bound to an acceptor atom. The recombination process is modeled as a sudden perturbation of the Hamiltonian for the in-plane degrees of freedom of the electron. We include in the perturbation, in addition to changes in the equilibrium positions of electrons, changes in the curvatures of the harmonically approximated potential. The computed spectra have line shapes similar to that seen in a recent experiment. The spectral width, however, is roughly a factor of 3 smaller than that seen in experiment if one assumes a perfect Wigner crystal for the initial state state of the system, whereas a simple random disorder model yields a width a factor of 3 too large. We speculate on the possible mechanisms that may lead to better quantitative agreement with experiment.Comment: 22 pages, RevTex, 8 figures. Submitted to the Physical Review

    Crystal structures and freezing of dipolar fluids

    Full text link
    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential rn\sim r^{-n}. A crossover between qualitatively different sequences of phases occurs near the exponent n=12n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory.Comment: submitted to Phys. Rev.

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR
    corecore