6,846 research outputs found
Hot-pressing process modeling for medium density fiberboard (MDF)
In this paper we present a numerical solution for the mathematical modeling
of the hot-pressing process applied to medium density fiberboard. The model is
based in the work of Humphrey[82], Humphrey and Bolton[89] and Carvalho and
Costa[98], with some modifications and extensions in order to take into account
mainly the convective effects on the phase change term and also a conservative
numerical treatment of the resulting system of partial differential equations.Comment: LaTeX, 11 figures. Added references. Fixed some errors. To appear in
International Journal of Mathematics and Mathematical Sciences,
http://jam.hindawi.co
Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage
Coronal loops act as resonant cavities for low frequency fluctuations that
are transmitted from the deeper layers of the solar atmosphere and are
amplified in the corona, triggering nonlinear interactions. However trapping is
not perfect, some energy leaks down to the chromosphere, thus limiting the
turbulence development and the associated heating. We consider the combined
effects of turbulence and leakage in determining the energy level and
associated heating rate in models of coronal loops which include the
chromosphere and transition region. We use a piece-wise constant model for the
Alfven speed and a Reduced MHD - Shell model to describe the interplay between
turbulent dynamics in the direction perpendicular to the mean field and
propagation along the field. Turbulence is sustained by incoming fluctuations
which are equivalent, in the line-tied case, to forcing by the photospheric
shear flows. While varying the turbulence strength, we compare systematically
the average coronal energy level (E) and dissipation rate (D) in three models
with increasing complexity: the classical closed model, the semi-open corona
model, and the corona-chromosphere (or 3-layer) model, the latter two models
allowing energy leakage. We find that:
(i) Leakage always plays a role (even for strong turbulence), E and D are
systematically lower than in the line-tied model. (ii) E is close to the
resonant prediction, i.e., assuming effective turbulent correlation time longer
than the Alfven coronal crossing time (Ta). (iii) D is close to the value given
by the ratio of photospheric energy divided by Ta (iv) The coronal spectra
exibits an inertial range with 5/3 spectral slope, and a large scale peak of
trapped resonant modes that inhibit nonlinear couplings. (v) In the realistic
3-layer model, the two-component spectrum leads to a damping time equal to the
Kolmogorov time reduced by a factor u_rms/Va_coronaComment: 15 pages, 15 figures, Accepted for publication in A&
Integrals of Motion for Critical Dense Polymers and Symplectic Fermions
We consider critical dense polymers . We obtain for this model
the eigenvalues of the local integrals of motion of the underlying Conformal
Field Theory by means of Thermodynamic Bethe Ansatz. We give a detailed
description of the relation between this model and Symplectic Fermions
including the indecomposable structure of the transfer matrix. Integrals of
motion are defined directly on the lattice in terms of the Temperley Lieb
Algebra and their eigenvalues are obtained and expressed as an infinite sum of
the eigenvalues of the continuum integrals of motion. An elegant decomposition
of the transfer matrix in terms of a finite number of lattice integrals of
motion is obtained thus providing a reason for their introduction.Comment: 53 pages, version accepted for publishing on JSTA
Support and power plant documentation for the gas turbine powered bus demonstration program
The operational experience obtained for the GT404-4 gas turbine engines in the intercity and intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. the Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively, than did the production diesel powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future
Speed limit to the Abrikosov lattice in mesoscopic superconductors
We study the instability of the superconducting state in a mesoscopic
geometry for the low pinning material MoGe characterized by a large
Ginzburg-Landau parameter. We observe that in the current driven switching to
the normal state from a nonlinear region of the Abrikosov flux flow, the mean
critical vortex velocity reaches a limiting maximum velocity as a function of
the applied magnetic field. Based on time dependent Ginzburg-Landau simulations
we argue that the observed behavior is due to the high velocity vortex dynamics
confined on a mesoscopic scale. We build up a general phase diagram which
includes all possible dynamic configurations of Abrikosov lattice in a
mesoscopic superconductor.Comment: 7 pages, 6 figure
Timoshenko Beam Model for Lateral Vibration of Liquid-Phase Microcantilever-Based Sensors
Dynamic-mode microcantilever-based devices are potentially well suited to biological and chemical sensing applications. However, when these applications involve liquid-phase detection, fluid-induced dissipative forces can significantly impair device performance. Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by exciting microcantilevers in the lateral flexural mode. However, experimental results show that, for microcantilevers having larger width-to-length ratios, the behaviors predicted by current analytical models differ from measurements. To more accurately model microcantilever resonant behavior in viscous fluids and to improve understanding of lateral-mode sensor performance, a new analytical model is developed, incorporating both viscous fluid effects and “Timoshenko beam” effects (shear deformation and rotatory inertia). Beam response is examined for two harmonic load types that simulate current actuation methods: tip force and support rotation. Results are expressed in terms of total beam displacement and beam displacement due solely to bending deformation, which correspond to current detection methods used with microcantilever-based devices (optical and piezoresistive detection, respectively). The influences of the shear, rotatory inertia, and fluid parameters, as well as the load/detection scheme, are investigated. Results indicate that load/detection type can impact the measured resonant characteristics and, thus, sensor performance, especially at larger values of fluid resistance
- …
