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Abstract: 

Dynamic-mode microcantilever-based devices are potentially well suited to 

biological and chemical sensing applications. However, when these 

applications involve liquid-phase detection, fluid-induced dissipative forces 

can significantly impair device performance. Recent experimental and 

analytical research has shown that higher in-fluid quality factors (Q) are 

achieved by exciting microcantilevers in the lateral flexural mode. However, 

experimental results show that, for microcantilevers having larger width-to-

length ratios, the behaviors predicted by current analytical models differ from 

measurements. To more accurately model microcantilever resonant behavior 

in viscous fluids and to improve understanding of lateral-mode sensor 

performance, a new analytical model is developed, incorporating both viscous 

fluid effects and “Timoshenko beam” effects (shear deformation and rotatory 

inertia). Beam response is examined for two harmonic load types that 

simulate current actuation methods: tip force and support rotation. Results 

are expressed in terms of total beam displacement and beam displacement 

due solely to bending deformation, which correspond to current detection 

methods used with microcantilever-based devices (optical and piezoresistive 

detection, respectively). The influences of the shear, rotatory inertia, and fluid 

parameters, as well as the load/detection scheme, are investigated. Results 

indicate that load/detection type can impact the measured resonant 

characteristics and, thus, sensor performance, especially at larger values of 

fluid resistance.  

Keywords: Timoshenko beam, microcantilever-based sensors, quality factor, 

resonant frequency, fluid-solid interaction. 
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INTRODUCTION 

Chemical and biological sensing is a rapidly developing field, 

resulting in an ever-increasing presence of 

micro/nanoelectromechanical systems (MEMS/NEMS) in a variety of 

diagnostic, monitoring, and security applications. However, many of 

these applications require liquid-phase sensing, which poses significant 

challenges for dynamic-mode sensors due to the drastic reductions in 

resonant frequency (fres) and quality factor (Q) that occur due to the 

liquid. To meet such challenges, recent research has explored the use 

of alternative vibrational modes of micro/nanocantilever devices in lieu 

of the fundamental transverse, or out-of-plane, flexural mode. In 

particular, advantages associated with the use of lateral (inplane) 

flexural modes have been pursued [1-9]. These studies were 

motivated by the goal of reducing the detrimental effects of fluid 

damping and fluid inertia, thus providing higher resonant frequencies, 

fres, and quality factors, Q, the latter corresponding to sharper 

resonance peaks. Such improvements in the resonant characteristics 

of the device translate into corresponding enhancements in sensor 

sensitivity and limit of detection, especially for liquid-phase detection 

[6, 10].  

Some of the previously mentioned studies on the use of the in-

plane flexural mode demonstrated both theoretically [3, 4, 8] and 

experimentally [5, 7] that the improvements in the in-liquid resonant 

characteristics will be most pronounced in microcantilevers that are 

relatively short and wide. However, the conclusions in the theoretical 

studies were based on EulerBernoulli beam models whose accuracy is 

known to deteriorate for short, wide beams deforming in the lateral 

mode due to the neglected “Timoshenko beam effects” of shear 

deformation and rotatory inertia. As these are exactly the geometries 

that show the most promise for lateral-mode, liquid-phase sensing, a 

strong motivation exists to generalize the previous Euler- Bernoulli 

modeling efforts to the realm of Timoshenko beam theory. Thus, the 

aim of the present paper is to present a Timoshenko beam model for a 

laterally vibrating microcantilever in the presence of a viscous fluid and 

to examine the theoretical beam response for two types of harmonic 

excitation that simulate current actuation methods: tip force and 

support rotation. Results will be expressed in terms of total beam 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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displacement and beam displacement due solely to bending 

deformation, which correspond to current detection methods used with 

microcantilever-based devices (optical and piezoresistive detection, 

respectively). The influences of the shear, rotatory inertia, and fluid 

parameters, as well as the actuation/detection scheme, will be 

investigated. 

PROBLEM STATEMENT 

Consider a microcantilever beam immersed in a viscous fluid 

which experiences an in-plane flexural vibration. The effects of shear 

deformation and rotatory inertia in the beam (“Timoshenko beam 

effects”) are to be included, as are the inertial and damping effects of 

the surrounding fluid. The geometric parameters (L, b, h) and material 

density and elastic moduli (ρb, E, G) of the cantilever are indicated in 

Fig. 1, as are the fluid’s density and viscosity (ρf, η). The loading 

parameters for the two load cases to be considered are shown in Fig. 

2. 

Load Case I involves a harmonically varying imposed rotation at 

the supported end, with amplitude θ0 and frequency ω. In Load Case 

II the beam is excited by a harmonically varying tip force of amplitude 

F0 and frequency ω. These load cases are considered because they 

represent two of the more common actuation methods used in 

microcantilever-based sensing applications. Load Case I simulates an 

electrothermal excitation scheme [5], involving thermally induced 

longitudinal thermal strains at the extreme fibers near the support. 

Such a loading may be represented kinematically as an imposed 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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Fig. 1 Definitions of Geometric and Material Parameters 

 

Fig. 2 (a) Load Case I – Imposed Harmonic Support Rotation; (b) Load Case II – 

Imposed Harmonic Tip Force 

harmonic rotation at the support [4]. Load Case II is chosen because a 

tip force loading may be induced via electromagnetic actuation 

methods, commonly used in dynamic-mode sensing applications. For 

each load case our focus will be on examining two particular response 

histories: the total displacement at the beam tip and the bending-

deformation displacement at the beam tip, the latter being that portion 

of the total tip displacement which is due to bending deformation only. 

The total tip displacement is the relevant output signal if 

microcantilever response is monitored by optical (laser) methods, 

while the bending-deformation displacement of the tip as predicted by 

the model provides an indirect measure of the beam’s bending strain,  

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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i.e., it will correspond to the output signal generated by piezoresistive 

elements that may be used to monitor beam response [5]. (This 

correlation is valid in the vicinity of a resonant peak since the 

vibrational shape due to bending deformation is relatively constant.) 

Of particular interest are the resonant frequency, fres, and the quality 

factor, Q, associated with viscous losses in the surrounding fluid. 

These may be correlated to sensor performance metrics, i.e., mass 

and chemical sensitivities and limit of detection. 

THEORETICAL MODEL 

To derive the Timoshenko beam model the following 

assumptions are made: (1) the beam is homogeneous, linear elastic, 

and isotropic; (2) deformations are small; (3) the beam is attached to 

a rigid support at one end (see left end in Figs. 1 and 2); (4) the cross 

section is relatively thin (h<<b) so that the fluid resistance on the 

smaller faces is negligible; (5) the shear stress exerted by the fluid on 

the beam is modeled by local application of the solution of Stokes’s 

second problem for harmonic, inplane oscillations of an infinite rigid 

surface in contact with a viscous fluid [11]; (6) the viscous energy 

dissipation in the fluid is the dominant loss mechanism. In tandem 

assumptions 4 and 5 shall be referred to the assumption of “Stokes 

fluid resistance,” as was the case in earlier Bernoulli-Euler models [3, 

4]. 

The foregoing assumptions (and the consideration of loads as 

specified in Load Cases I and II) result in the following governing 

equations for the lateral vibration of a harmonically excited 

Timoshenko beam in a viscous fluid providing Stokes resistance:  

    (1a) 

(1b) 

where �̅� ≡ v / L is the dimensionless total deflection, ϕ 

represents the rotation of the beam cross section, ξ ≡ x / L is a  

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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dimensionless spatial coordinate, and τ ≡ωt is dimensionless time. 

The “Timoshenko beam parameters,” r and s, are defined as the 

rotational inertia parameter and the shear deformation parameter, 

respectively, via [12, 13]  

 (2a, b) 

where A=bh , I= hb3/12, and k=5/6 is the shear coefficient for a 

rectangular cross section. The dimensionless frequency and fluid 

resistance parameters, λ and ζ , are related to the fundamental 

system parameters by  

               (3a, b) 

The governing equations are accompanied by four boundary conditions 

(BCs). For Load Case I, the BCs are  

  (4a-d) 

while for Load Case II the following BCs apply:  

      (5a-d) 

where  

             (6)  

The boundary value problems (BVPs) to be solved consist of the 

governing equations, Eqs. (1a,b), and the corresponding set of BCs: 

Eqs. (4a-d) for Load Case I (harmonic support rotation) and Eqs. (5a-

d) for Load Case II (harmonic tip force). These BVPs may be solved in 

analytical form, the details of which will not be presented here, but 

may be found in Ref. 14. Once the solution for the beam response        

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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(�̅� and φ) is obtained, any other field of interest may be derived. In 

particular, the beam displacement due to bending deformation, vB-D, 

may be expressed in normalized form as  

(7a, b) 

Note that the final term in Eq. (7a) is associated with removing the 

rigid-body rotation (see Fig. 2a) so that the result corresponds to the 

“bending-deformation displacement” that is associated only with 

bending strains that are being induced. The normalized shear 

displacement may be obtained for either load case by subtracting the 

bending displacement (including any rigid-body rotation) from the total 

displacement:  

     (8) 

THEORETICAL RESULTS AND DISCUSSION 

Frequency Spectra 

The theoretical model may be used to generate frequency 

spectra, i.e., plots of the magnitude of the tip displacement amplitude 

versus the driving frequency for any output signal and for either load 

case (harmonic support rotation or tip force). In what follows the 

dynamic response of the beam will be characterized by three different 

output signals: DT, DB-D, and DS, corresponding respectively to 

normalized values of total displacement at the beam tip (DT) and the 

components of the tip displacement associated only with bending 

deformation (DB-D) or shear deformation (DS). Of primary interest are 

the resonant characteristics and not the entire frequency spectrum; 

however, for illustrative purposes we show some examples of 

frequency spectra in Figs. 3a and 3b for Load Cases I and II, 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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respectively. These figures correspond to fixed values of r=0.2 and ζ 

=1 while the value of the material parameter 

e ≡ √𝐸/𝑘𝐺             (9) 

is allowed to vary. Note that e corresponds to the relative size of the 

Young’s modulus to the shear modulus and thus larger values of e 

correspond to the material having an increased susceptibility to shear 

deformation (i.e., smaller values of the shear modulus G). Since 

parameter e is independent of beam dimensions, we shall use it as a 

shear deformation parameter in place of parameter s (= er) defined in 

Eq. (2b). 

The plots of Figs. 3a,b indicate that an increase in e results in a 

decrease in the resonant frequency as would be detected by any of the 

signals, which is to be expected due to the increasing flexibility of the 

model for larger e values. For the case of harmonic support rotation 

(Fig. 3a) an increase in e causes a decrease in the resonant amplitude 

of the total tip displacement (DT), while for the harmonic tip force case 

(Fig. 3b) the resonant amplitude increases with increasing e. However, 

if one 

 

Fig. 3 Frequency Spectra for a Microcantilever Beam Vibrating Laterally in a Viscous 

Fluid for the Case r = 0.2, ζ = 1.0, and e = 0 (black), 1 (red), 2 (blue), 3 (magenta) 

as Detected By Total, Bending-Deformation, and Shear Displacement at the Tip: (a) 

Load Case I; (b) Load Case II 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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considers the resonant amplitudes of the bending-deformation and 

shear portions of the tip displacement (DB-D and DS) as the value of e 

increases, one finds that the strength of the DB-D signal at resonance 

decreases for both load cases, while the strength of the shear signal 

increases, as expected. Similar conclusions apply with respect to 

changes in the value of r, although the corresponding figures are not 

included here. For Load Case I it is interesting to note that the 

bendingdeformation displacement signal yields a larger resonant 

amplitude than the total displacement signal. This is associated with 

“misalignment” of the resonant peaks of the three output signals in 

Fig. 3a, which is due to the fact that the total displacement becomes 

more out-of-phase with the bending-deformation and shear 

displacements (and the imposed support rotation) as ζ increases. The 

different resonant amplitudes of the various output signals could have 

important implications with regard to the appropriate design of 

detection schemes for these types of sensing devices. For example, a 

detection scheme based on monitoring of bending strain (e.g., via 

piezoresistors at the extreme fibers of the beam near the support) 

might only “see” a small portion of the deformation response if a 

significant amount of shear deformation is present. In such a case, one 

may wish to replace or supplement the bending-strain detection 

scheme with shear strain measurements near the neutral axis of the 

beam’s cross section. 

The numerical results to follow in the remaining sections of the 

paper will focus on the resonant frequency and quality factor of lateral-

mode mirocantilevers in liquids. Theoretical values of these resonant 

quantities may easily be extracted from frequency response curves of 

the type shown in Figs. 3a,b. For microscale devices in liquids whose 

properties are on the same order as that of water, the fluid resistance 

parameter lies in the range 0 ≤ ζ ≤ 0.2 , in which case the values of 

resonant frequency and quality factor are very insensitive to both the 

load case and the output signal employed. However, for other 

applications (either at the nanoscale or in fluids with higher viscosity 

and/or density) the fluid resistance parameter may be much larger. In 

these cases there may be noticeable differences in resonant 

characteristics of the output signals generated by the different 

loading/detection schemes, as is apparent in Figs. 3a,b for the case of 

ζ = 1 . In the results that follow such differences between the total  

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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and bending-deformation signals will be explored, but only Load Case I 

(harmonic support rotation) will be considered as it corresponds to the 

most common actuation method (electrothermal) used to date for 

lateralmode microcantilevers. (Similar results may easily be generated 

for the tip force case.) 

Resonant Frequency 

The resonant frequency parameter, λres, for the first lateral 

mode is plotted in Fig. 4 for the case of harmonic support rotation. The 

figure shows the dependence of resonant frequency on the 

Timoshenko parameters, as characterized by the geometric parameter 

r and material parameter e. These resonant frequency values 

correspond to the first peaks of the frequency spectra for the total 

displacement and the bending-deformation displacement at the tip 

(curves of the type plotted in Fig. 3a). The ranges of parameters 

considered in Fig. 4 include practical values of microcantilever 

dimensions and material properties expected to be encountered in 

lateral-mode MEMS sensing applications, including those necessitating 

the incorporation of shear deformation and rotatory inertia effects 

(i.e., when b/L is not small relative to unity). 

Figure 4 clearly illustrates several trends. First, there is an 

expected reduction in resonant frequency associated with an increase 

in the fluid resistance parameter. This may be interpreted as follows: 

for fixed cantilever dimensions the resonant frequency will decrease if 

the fluid density or viscosity is increased. Also observed in Fig. 4 is 

how higher levels of Timoshenko parameters – larger r and e values, 

corresponding to increased rotational inertia and decreased shear 

stiffness of the beam – will result in a reduction in resonant frequency. 

Over the range of Timoshenko and fluid parameters considered in Fig. 

4, the maximum effect of r and e is to cause a reduction of 26% in λres 

which, according to Eq. (8a), is equivalent to a decrease in the 

resonant frequency, ωres, of 46%. These reductions correspond to the 

DT signal for the case of r=0.2, e=3 in Fig. 4b. If we consider the case 

e=2, which corresponds to “textbook” values of moduli for silicon in 

the frame of reference of a standard (100) silicon wafer [15], i.e., 

E=169 GPa, G=50.9 GPa, and a shear coefficient of k=5/6, Fig. 4b 

shows that the largest influence of the Timoshenko effects on the 

resonant frequency is a 17% decrease in λres (31% reduction in ωres), 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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which occurs at r=0.2. Clearly, significant error may be introduced in 

the resonant frequency estimate if the Timoshenko effects are ignored 

in such cases. Finally, as a verification of the resonant frequency 

results, we find that the value in Fig. 4a for the case r = ζ = 0 (i.e., 

the starting value of the upper curve) is given by λres = 1.8751, which 

agrees with the well-known eigenvalue for an Euler-Bernoulli beam in 

vacuum [16]. 

The effect of a larger value of fluid resistance parameter 

(associated with smaller beam dimensions and/or increased values of 

fluid properties) may be seen by comparing the curves in Fig. 4a 

(small ζ) to those in Fig. 4b (larger ζ). In particular we note that the 

sensitivity of the resonant frequency to the output signal is negligible 

in the former case but becomes much more pronounced in the latter 

case of ζ = 1. We observe that for cases of larger values of fluid 

resistance parameter, monitoring the bending deformation of the 

beam actually results in a noticeably higher resonant frequency than if 

one tracks the total tip displacement. This result is related to the 

previously mentioned fact that the total displacement becomes more 

out-of-phase with the bending-deformation and shear displacements 

as ζ increases, and may have important implications in sensor 

applications as the mass sensitivity tends to be higher at larger values 

of resonant frequency. 

 

Fig. 4 Theoretical Values of Normalized Resonant Frequency of a Microcantilever 

Vibrating Laterally in a Viscous Fluid as Detected by Total and Bending-Deformation 

Tip Displacements for Load Case I: (a) Small Fluid Resistance Results (ζ = 0 and ζ 

=0.2); (b) Large Fluid Resistance Results (ζ = 1.0) 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
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Quality Factor 

Applying the half-power (bandwidth) method to the theoretical 

frequency spectra such as those shown in Fig. 3, one may obtain the 

quality factor for a range of fluid resistance and Timoshenko 

parameters. For example, the quality factor based on both the total tip 

displacement and the bending-deformation portion are plotted in Fig. 5 

for the case of harmonic support rotation loading over the range ζ ∈ 

[0, 1] . The figure is based on specified values of r=0.2 (i.e., b/L=0.7) 

and e=2 (e.g., silicon). Clearly, there is a very strong impact of the 

fluid resistance parameter on the quality factor, with Q following what 

appears to be roughly an inverse relationship with ζ as was shown to 

be the case for a Bernoulli-Euler beam [3, 4]. Recalling the definition 

of ζ , the viscosity and density of the fluid participate to an equal 

extent in determining Q. Also apparent from Fig. 5 are the virtually 

identical results for Q as detected by the two types of output signals 

when ζ is small ( ζ ≤ 0.2 ). However, at larger values of fluid 

resistance, the figure indicates a noticeable difference in the detected 

values of Q, with DT yielding a quality factor that is 11% higher than 

that based on the DB-D signal at ζ = 1 . 

Unlike the strong dependence of Q on ζ , the effect of 

increasing the Timoshenko parameter e from 0 to 3 (not shown here) 

results in a relatively modest 15% reduction of the quality factor 

compared to the Bernoulli-Euler (e= 0) case, even for a relatively large 

value of r such as r=0.2 . Similarly, for a specified value of e between 

0 and 3, changing r over the range 0 to 0.2 results in a modest 

reduction in Q that is no larger than 15%. Thus, based on the 

observations here and in the previous section, the model indicates that 

the Timoshenko effects have a stronger impact on the resonant 

frequency than on the quality factor. 
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Fig. 5 Theoretical Quality Factor Based on Half-Power (Bandwidth) Method at First 

Resonance for Fluid Resistance Values ζ ∈[0, 1] and Timoshenko Parameters r = 0.2 

and e = 2 as Detected by DT and DB-D 

COMPARISONS WITH EXPERIMENTAL DATA 

In an attempt to validate the current model, the theoretical 

results were compared with experimental data for resonant frequency 

and quality factor for laterally excited microcantilevers in water. The 

beams were actuated electrothermally in a manner that may be 

modeled kinematically as an imposed support rotation as noted earlier. 

Details regarding device fabrication [5] and the testing procedure [7] 

are described elsewhere. Specimen geometries were grouped 

according to the nominal thicknesses of the Si substrate material, 

hnom = (5, 8, 12, 20) μm, and within each thickness set the length 

and width dimensions were as follows: L = (200, 400, 600, 800, 1000) 

μm, b = (45, 60, 75, 90) μm. For all of the theoretical calculations, 

estimates of the total thickness (Si plus several passivation layers) 

were used in lieu of the nominal silicon thicknesses. To generate 

theoretical results it was necessary to also specify numerical values of 

the following material parameters: C1 ≡ √𝐸/12𝜌𝑏 and C2≡e = √𝐸/ 𝑘𝐺. 

Due to the composite nature of the fabricated cantilevers (Si substrate 

plus several passivation layers), it is difficult to prescribe specific 

values of the effective Young’s modulus E or shear modulus G a priori. 

Therefore, the values of the C1 parameter (for each thickness set) 
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were determined by fitting the in-vacuum results of the present model 

to in-air experimental frequency data (assuming that the air resistance 

has a negligible impact on the fres). The same values of C1 were then 

used in making the comparison between the in-water results of the 

present model and the in-water experimental data, which is the 

comparison of main interest in this study. A similar approach may 

have been utilized to obtain best-fit C2 values by fitting the in-air 

frequency data; however, this would possibly result in “overfitting” the 

model to the data. To avoid this situation and thereby provide a more 

objective means of validating the model, the previously mentioned 

“textbook” value of C2=2 was used, as this corresponds to the 

orientation of the Si microbeams used. Note that the C1 value is 

associated with the initial slope of the resonant frequency vs. b/L2 

curves, while the C2 value corresponds to the degree of curvature of 

these curves (i.e., departure from linearity) at larger values of b/L2. In 

all calculations for the in-water case, the fluid properties were 

specified as 𝜌𝑓 = 1000 kg/m3 and η = 0.001 Pa·s in the model. 

A sample of the theory vs. experimental data comparisons is 

shown in Fig. 6 for the resonant frequency for the first lateral mode. 

Only the comparison for the nominal thickness of 5 μm is included 

here (total thickness = 7.02 μm when passivation layers are included), 

but similar trends apply to the other thicknesses [14]. The comparison 

of resonant frequencies in Fig. 6 indicates that the model is able to 

simulate qualitatively the softening trend of the experimental data for 

the shorter, wider beams (larger b/L2 values) for which the 

Timoshenko beam effects (shear deformation and rotatory inertia) are 

expected to be more pronounced. However, from a quantitative 

perspective the model underestimates the departure from the linear 

Bernoulli-Euler results, indicating that (a) the actual value of C2 is 

much larger than the specified value of 2, possibly due to the 

composite nature of the microstructure or imperfect bonding between 

layers, and/or (b) an additional softening effect is being neglected in 

the present model. With regard to the latter possibility, the most likely 

candidate would be the finite support compliance that is ignored in the 

present model which assumes a rigid support. As the beam becomes 

shorter and wider, not only do the Timoshenko beam effects become 

more important, but the flexural stiffness of the beam becomes 

relatively large in comparison with the rotational stiffness of the  
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support. As a result, there is a greater likelihood that the support will 

elastically deform during the vibration and that this will introduce an 

additional softening effect leading to even lower resonant frequencies 

such as those indicated by the data in Fig. 6. (This effect is currently 

being incorporated into the present Timoshenko beam model via an 

appropriate modification of the boundary conditions.) 

 

Fig. 6 Comparison of Current In-Fluid, Timoshenko Model to Experimental Resonant 

Frequency for First Lateral Flexural Mode, Nominal Thickness 5 μm Using C1 = 2.3240 

km/sec and C2 = 2 

 

http://dx.doi.org/10.1007/978-3-319-00780-9_15
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

MEMS and Nanotechnology: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, Vol. 5 
(2014): pg. 115-124. DOI. This article is © Society for Experimental Mechanics and permission has been granted for this 
version to appear in e-Publications@Marquette. Society for Experimental Mechanics does not grant permission for this 
article to be further copied/distributed or hosted elsewhere without the express permission from Society for 
Experimental Mechanics. 

17 

 

Fig. 7 Comparison of Current In-Fluid, Timoshenko Model to Experimental [7] 

Quality Factor for First Lateral Flexural Mode, Nominal Thickness 5 μm Using C1 = 

2.3240 km/sec and C2 = 2 

In Fig. 7 the comparison of theoretical results vs. experimental 

data is shown for the quality factor at the first resonance peak. Again, 

the comparison is shown only for the 5-μm nominal thickness 

specimens, but similar trends apply to the other thicknesses [14]. As 

was the case in the frequency comparison, the model is able to 

simulate qualitatively the softening trend of the experimental Q data 

for the shorter, wider beams (larger b1/2/L values) due to higher levels 

of shear deformation and rotatory inertia, but quantitatively the 

predicted Q values still remain larger than the experimental values. 

Possible reasons for this include those that were previously noted for 

the frequency comparison. Fig. 7 also indicates that the theoretical 

results for Q slightly overestimate the data even for the more slender 

specimens, indicating that the Stokes fluid resistance model is slightly 

underestimating the fluid damping and thereby giving a reasonable 

upper-bound estimate of the actual quality factor. As expected, the 

assumption of Stokes resistance yields reasonable estimates of Q for 

the thinner beams (in this case those with nominal thicknesses of 5 

and 8 μm), but leads to a significant overestimation of Q for the 

thicker specimens (nominal thicknesses of 12 and 20 μm). We note 

that the departure of the experimental Q data from the linearity 

implied by Bernoulli-Euler theory is not as strong as that associated 

with the resonant frequency (compare Figs. 6 and 7), and the 

theoretical model shows a similar trend in this respect. 

SUMMARY AND CONCLUSIONS 

An analytical Timoshenko beam model that incorporates fluid 

effects via a Stokes-type fluid resistance assumption has been 

presented. The theoretical results for resonant frequency and quality 

factor have been shown to depend on the loading type and detection 

scheme for higher values of the fluid resistance parameter. Notably, 

the quality factor obtained from the total tip displacement was found 

to be higher than that associated with monitoring the bending 

deformation response (analogous to measuring flexural strains near 

the support). Comparisons between the analytical results and 

experimental data indicated that the analytical model provides an  
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improvement over the Bernoulli-Euler theory and yields the same 

qualitative trends exhibited by the data. These comparisons indicate 

that the quantitative results of the model, which provide reasonable 

estimates to the data in many cases, may be further improved by 

incorporating support compliance effects into the Timoshenko beam 

model presented in the present work. 
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