192 research outputs found

    Estado de la plaza de Gerona en el día 29 del mes de noviembre de 1809 : séptimo mes de su memorable sitio

    Get PDF
    Copia digital. Madrid : Ministerio de Cultura. Subdirección General de Coordinación Bibliotecaria, 200

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Tilting mechanisms in domino faults of the Sierra de San Miguelito, central Mexico

    Get PDF
    A system of normal faults with similar strike that bound rotated blocks in the Sierra de San Miguelito, central Mexico, was studied to determine the genesis of rotation and to estimate the extensional strain. We show that rigid-body rotation was not the main deformation mechanism of the domino faults in this region. We propose vertical or inclined shear accommodated by slip on minor faults as the mechanism for strain in the blocks. In order to test quantitatively the amount of strain, we calculated the extension assuming vertical shear obtaining ca. ev ~0.20. This value is in good agreement with extensions previously reported for the Mesa Central of México. The bed extension required in this model reaches ca. 33% of the total horizontal extension (i. e. ebed =0.34 ev). Assuming self-similar geometry for fault displacements, it is shown that bed strain required in shear models can be liberated by the small faults. If the strain is calculated using the rigid-body rotation model, the lengthening is underestimated by up to 9%. This case study shows that shear models could be applied in volcanic zones

    Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs

    Full text link
    [EN] Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning algorithms address the problem by using the approach of maintaining a constant altitude. Addressing the problem of path planning in a three-dimensional (3D) space implies more complex scenarios where maintaining altitude is not a valid approach. The work presented here implements an architecture for the generation of 3D flight paths for fixed-wing unmanned aerial vehicles (UAVs). The aim is to determine the feasible flight path by minimizing the turning effort, starting from a set of control points in 3D space, including the initial and final point. The trajectory generated takes into account the rotation and elevation constraints of the UAV. From the defined control points and the movement constraints of the UAV, a path is generated that combines the union of the control points by means of a set of rectilinear segments and spherical curves. However, this design methodology means that the problem does not have a single solution; in other words, there are infinite solutions for the generation of the final path. For this reason, a multiobjective optimization problem (MOP) is proposed with the aim of independently maximizing each of the turning radii of the path. Finally, to produce a complete results visualization of the MOP and the final 3D trajectory, the architecture was implemented in a simulation with Matlab/Simulink/flightGear.The authors would like to acknowledge the Spanish Ministerio de Ciencia, Innovacion y Universidades for providing funding through the project RTI2018-096904-B-I00 and the local administration Generalitat Valenciana through projects GV/2017/029 and AICO/2019/055. Franklin Samaniego thanks IFTH (Instituto de Fomento al Talento Humano) Ecuador (2015-AR2Q9209), for its sponsorship of this work.Samaniego, F.; Sanchís Saez, J.; Garcia-Nieto, S.; Simarro Fernández, R. (2020). Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics. 9(1):1-23. https://doi.org/10.3390/electronics9010051S12391Kyriakidis, M., Happee, R., & de Winter, J. C. F. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140. doi:10.1016/j.trf.2015.04.014Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. doi:10.1016/j.jenvp.2006.08.001Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., & Hagita, N. (2013). Human-comfortable navigation for an autonomous robotic wheelchair. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2013.6696743Krotkov, E., & Hebert, M. (s. f.). Mapping and positioning for a prototype lunar rover. Proceedings of 1995 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1995.525697Rodriguez-Seda, E. J. (2014). Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed. 2014 American Control Conference. doi:10.1109/acc.2014.6859184Xiaoping Ren, & Zixing Cai. (2010). Kinematics model of unmanned driving vehicle. 2010 8th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2010.5554512Jun, J.-Y., Saut, J.-P., & Benamar, F. (2016). Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robotics and Autonomous Systems, 75, 325-339. doi:10.1016/j.robot.2015.09.014Li, Y., Ding, L., & Liu, G. (2016). Attitude-based dynamic and kinematic models for wheels of mobile robot on deformable slope. Robotics and Autonomous Systems, 75, 161-175. doi:10.1016/j.robot.2015.10.006Mekonnen, G., Kumar, S., & Pathak, P. M. (2016). Wireless hybrid visual servoing of omnidirectional wheeled mobile robots. Robotics and Autonomous Systems, 75, 450-462. doi:10.1016/j.robot.2015.08.008Xu, J., Wang, M., & Qiao, L. (2015). Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engineering, 105, 54-63. doi:10.1016/j.oceaneng.2015.06.022Gafurov, S. A., & Klochkov, E. V. (2015). Autonomous Unmanned Underwater Vehicles Development Tendencies. Procedia Engineering, 106, 141-148. doi:10.1016/j.proeng.2015.06.017Qi, X., & Cai, Z. (2018). Three-dimensional formation control based on nonlinear small gain method for multiple underactuated underwater vehicles. Ocean Engineering, 151, 105-114. doi:10.1016/j.oceaneng.2018.01.032Ramasamy, S., Sabatini, R., Gardi, A., & Liu, J. (2016). LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology, 55, 344-358. doi:10.1016/j.ast.2016.05.020Zhu, L., Cheng, X., & Yuan, F.-G. (2016). A 3D collision avoidance strategy for UAV with physical constraints. Measurement, 77, 40-49. doi:10.1016/j.measurement.2015.09.006Chee, K. Y., & Zhong, Z. W. (2013). Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical, 190, 66-76. doi:10.1016/j.sna.2012.11.017Courbon, J., Mezouar, Y., Guénard, N., & Martinet, P. (2010). Vision-based navigation of unmanned aerial vehicles. Control Engineering Practice, 18(7), 789-799. doi:10.1016/j.conengprac.2010.03.004Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875Liang, Y., & Xu, L. (2009). Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC ’09. doi:10.1145/1543834.1543875Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2016). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829-5839. doi:10.1007/s00500-016-2161-7Cao, H., Sun, S., Zhang, K., & Tang, Z. (2016). Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm. Optik, 127(20), 9974-9983. doi:10.1016/j.ijleo.2016.07.078Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7(1), 24-37. doi:10.1108/ijicc-02-2014-0005Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47-58. doi:10.1016/j.dt.2017.01.001Samaniego, F., Sanchis, J., García-Nieto, S., & Simarro, R. (2019). Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics, 8(3), 306. doi:10.3390/electronics8030306Dubins, L. E. (1957). On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics, 79(3), 497. doi:10.2307/2372560Fleury, S., Soueres, P., Laumond, J.-P., & Chatila, R. (1995). Primitives for smoothing mobile robot trajectories. IEEE Transactions on Robotics and Automation, 11(3), 441-448. doi:10.1109/70.388788Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835Brezak, M., & Petrovic, I. (2014). Real-time Approximation of Clothoids With Bounded Error for Path Planning Applications. IEEE Transactions on Robotics, 30(2), 507-515. doi:10.1109/tro.2013.2283928Barsky, B. A., & DeRose, T. D. (1989). Geometric continuity of parametric curves: three equivalent characterizations. IEEE Computer Graphics and Applications, 9(6), 60-69. doi:10.1109/38.41470Kim, H., Kim, D., Shin, J.-U., Kim, H., & Myung, H. (2014). Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering, 84, 37-44. doi:10.1016/j.oceaneng.2014.03.034Isaacs, J., & Hespanha, J. (2013). Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach. Algorithms, 6(1), 84-99. doi:10.3390/a6010084Masehian, E., & Kakahaji, H. (2014). NRR: a nonholonomic random replanner for navigation of car-like robots in unknown environments. Robotica, 32(7), 1101-1123. doi:10.1017/s0263574713001276Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s to Continuous-Curvature Paths. IEEE Transactions on Robotics, 20(6), 1025-1035. doi:10.1109/tro.2004.833789Pepy, R., Lambert, A., & Mounier, H. (s. f.). Path Planning using a Dynamic Vehicle Model. 2006 2nd International Conference on Information & Communication Technologies. doi:10.1109/ictta.2006.1684472Girbés, V., Vanegas, G., & Armesto, L. (2019). Clothoid-Based Three-Dimensional Curve for Attitude Planning. Journal of Guidance, Control, and Dynamics, 42(8), 1886-1898. doi:10.2514/1.g003551De Lorenzis, L., Wriggers, P., & Hughes, T. J. R. (2014). Isogeometric contact: a review. GAMM-Mitteilungen, 37(1), 85-123. doi:10.1002/gamm.201410005Pigounakis, K. G., Sapidis, N. S., & Kaklis, P. D. (1996). Fairing Spatial B-Spline Curves. Journal of Ship Research, 40(04), 351-367. doi:10.5957/jsr.1996.40.4.351Pérez, L. H., Aguilar, M. C. M., Sánchez, N. M., & Montesinos, A. F. (2018). Path Planning Based on Parametric Curves. Advanced Path Planning for Mobile Entities. doi:10.5772/intechopen.72574Huh, U.-Y., & Chang, S.-R. (2014). A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(2), 25. doi:10.5772/57340Chang, S.-R., & Huh, U.-Y. (2014). A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(12), 194. doi:10.5772/59463Yaochu Jin, & Sendhoff, B. (2008). Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3), 397-415. doi:10.1109/tsmcc.2008.919172Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294Honig, E., Schucking, E. L., & Vishveshwara, C. V. (1974). Motion of charged particles in homogeneous electromagnetic fields. Journal of Mathematical Physics, 15(6), 774-781. doi:10.1063/1.1666728Iyer, B. R., & Vishveshwara, C. V. (1988). The Frenet-Serret formalism and black holes in higher dimensions. Classical and Quantum Gravity, 5(7), 961-970. doi:10.1088/0264-9381/5/7/005Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.01

    Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs

    Full text link
    [EN] A relevant task in unmanned aerial vehicles (UAV) flight is path planning in 3D environments. This task must be completed using the least possible computing time. The aim of this article is to combine methodologies to optimise the task in time and offer a complete 3D trajectory. The flight environment will be considered as a 3D adaptive discrete mesh, where grids are created with minimal refinement in the search for collision-free spaces. The proposed path planning algorithm for UAV saves computational time and memory resources compared with classical techniques. With the construction of the discrete meshing, a cost response methodology is applied as a discrete deterministic finite automaton (DDFA). A set of optimal partial responses, calculated recursively, indicates the collision-free spaces in the final path for the UAV flight.The authors would like to acknowledge the Spanish Ministry of Economy and Competitiveness for providing funding through the project DPI2015-71443-R and the local administration Generalitat Valenciana through the project GV/2017/029. Franklin Samaniego thanks IFTH (Instituto de Fomento al Talento Humano) Ecuador (2015-AR2Q9209), for its sponsorship of this work.Samaniego-Riera, FE.; Sanchís Saez, J.; Garcia-Nieto, S.; Simarro Fernández, R. (2019). Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics. 8(3):1-21. https://doi.org/10.3390/electronics8030306S12183Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of Unmanned Aerial Vehicles. doi:10.1007/978-90-481-9707-120 Great UAV Applications Areas for Droneshttp://air-vid.com/wp/20-great-uav-applications-areas-drones/Industry Experts—Microdroneshttps://www.microdrones.com/en/industry-experts/Li, J., & Han, Y. (2017). Optimal Resource Allocation for Packet Delay Minimization in Multi-Layer UAV Networks. IEEE Communications Letters, 21(3), 580-583. doi:10.1109/lcomm.2016.2626293Stuchlík, R., Stachoň, Z., Láska, K., & Kubíček, P. (2015). Unmanned Aerial Vehicle – Efficient mapping tool available for recent research in polar regions. Czech Polar Reports, 5(2), 210-221. doi:10.5817/cpr2015-2-18Pulver, A., & Wei, R. (2018). Optimizing the spatial location of medical drones. Applied Geography, 90, 9-16. doi:10.1016/j.apgeog.2017.11.009Claesson, A., Svensson, L., Nordberg, P., Ringh, M., Rosenqvist, M., Djarv, T., … Hollenberg, J. (2017). Drones may be used to save lives in out of hospital cardiac arrest due to drowning. Resuscitation, 114, 152-156. doi:10.1016/j.resuscitation.2017.01.003Reineman, B. D., Lenain, L., Statom, N. M., & Melville, W. K. (2013). Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers. Journal of Atmospheric and Oceanic Technology, 30(7), 1295-1319. doi:10.1175/jtech-d-12-00176.1LaValle, S. M. (2006). Planning Algorithms. doi:10.1017/cbo9780511546877Elbanhawi, M., & Simic, M. (2014). Sampling-Based Robot Motion Planning: A Review. IEEE Access, 2, 56-77. doi:10.1109/access.2014.2302442Hernandez, K., Bacca, B., & Posso, B. (2017). Multi-goal Path Planning Autonomous System for Picking up and Delivery Tasks in Mobile Robotics. IEEE Latin America Transactions, 15(2), 232-238. doi:10.1109/tla.2017.7854617Kohlbrecher, S., von Stryk, O., Meyer, J., & Klingauf, U. (2011). A flexible and scalable SLAM system with full 3D motion estimation. 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. doi:10.1109/ssrr.2011.6106777Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070Aguilar, W. G., Morales, S., Ruiz, H., & Abad, V. (2017). RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs. Lecture Notes in Computer Science, 585-595. doi:10.1007/978-3-319-59147-6_50Yao, P., Wang, H., & Su, Z. (2015). Hybrid UAV path planning based on interfered fluid dynamical system and improved RRT. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. doi:10.1109/iecon.2015.7392202Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875Denny, J., & Amatoo, N. M. (2013). Toggle PRM: A Coordinated Mapping of C-Free and C-Obstacle in Arbitrary Dimension. Algorithmic Foundations of Robotics X, 297-312. doi:10.1007/978-3-642-36279-8_18Li, Q., Wei, C., Wu, J., & Zhu, X. (2014). Improved PRM method of low altitude penetration trajectory planning for UAVs. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. doi:10.1109/cgncc.2014.7007587Ortiz-Arroyo, D. (2015). A hybrid 3D path planning method for UAVs. 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). doi:10.1109/red-uas.2015.7440999Thanou, M., & Tzes, A. (2014). Distributed visibility-based coverage using a swarm of UAVs in known 3D-terrains. 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). doi:10.1109/isccsp.2014.6877904Qu, Y., Zhang, Y., & Zhang, Y. (2014). Optimal flight path planning for UAVs in 3-D threat environment. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi:10.1109/icuas.2014.6842250Fang, Z., Luan, C., & Sun, Z. (2017). A 2D Voronoi-Based Random Tree for Path Planning in Complicated 3D Environments. Advances in Intelligent Systems and Computing, 433-445. doi:10.1007/978-3-319-48036-7_31Khuswendi, T., Hindersah, H., & Adiprawita, W. (2011). UAV path planning using potential field and modified receding horizon A* 3D algorithm. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. doi:10.1109/iceei.2011.6021579Chen, X., & Zhang, J. (2013). The Three-Dimension Path Planning of UAV Based on Improved Artificial Potential Field in Dynamic Environment. 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. doi:10.1109/ihmsc.2013.181Rivera, D. M., Prieto, F. A., & Ramirez, R. (2012). Trajectory Planning for UAVs in 3D Environments Using a Moving Band in Potential Sigmoid Fields. 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium. doi:10.1109/sbr-lars.2012.26Liu Lifen, Shi Ruoxin, Li Shuandao, & Wu Jiang. (2016). Path planning for UAVS based on improved artificial potential field method through changing the repulsive potential function. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). doi:10.1109/cgncc.2016.7829099Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390Verscheure, L., Peyrodie, L., Makni, N., Betrouni, N., Maouche, S., & Vermandel, M. (2010). Dijkstra’s algorithm applied to 3D skeletonization of the brain vascular tree: Evaluation and application to symbolic. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. doi:10.1109/iembs.2010.5626112Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136Ferguson, D., & Stentz, A. (s. f.). Field D*: An Interpolation-Based Path Planner and Replanner. Robotics Research, 239-253. doi:10.1007/978-3-540-48113-3_22De Filippis, L., Guglieri, G., & Quagliotti, F. (2011). Path Planning Strategies for UAVS in 3D Environments. Journal of Intelligent & Robotic Systems, 65(1-4), 247-264. doi:10.1007/s10846-011-9568-2Gautam, S. A., & Verma, N. (2014). Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3D. 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC). doi:10.1109/icdmic.2014.6954257Maturana, D., & Scherer, S. (2015). 3D Convolutional Neural Networks for landing zone detection from LiDAR. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139679Iswanto, I., Wahyunggoro, O., & Imam Cahyadi, A. (2016). Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition Algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(2), 655. doi:10.12928/telkomnika.v14i2.2989Duan, H., Yu, Y., Zhang, X., & Shao, S. (2010). Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simulation Modelling Practice and Theory, 18(8), 1104-1115. doi:10.1016/j.simpat.2009.10.006He, Y., Zeng, Q., Liu, J., Xu, G., & Deng, X. (2013). Path planning for indoor UAV based on Ant Colony Optimization. 2013 25th Chinese Control and Decision Conference (CCDC). doi:10.1109/ccdc.2013.6561444Zhang, Y., Wu, L., & Wang, S. (2013). UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm Optimization. Mathematical Problems in Engineering, 2013, 1-9. doi:10.1155/2013/705238Goel, U., Varshney, S., Jain, A., Maheshwari, S., & Shukla, A. (2018). Three Dimensional Path Planning for UAVs in Dynamic Environment using Glow-worm Swarm Optimization. Procedia Computer Science, 133, 230-239. doi:10.1016/j.procs.2018.07.028YongBo, C., YueSong, M., JianQiao, Y., XiaoLong, S., & Nuo, X. (2017). Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing, 266, 445-457. doi:10.1016/j.neucom.2017.05.059Wang, G.-G., Chu, H. E., & Mirjalili, S. (2016). Three-dimensional path planning for UCAV using an improved bat algorithm. Aerospace Science and Technology, 49, 231-238. doi:10.1016/j.ast.2015.11.040Aghababa, M. P. (2012). 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Applied Ocean Research, 38, 48-62. doi:10.1016/j.apor.2012.06.002Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13-28. doi:10.1016/j.robot.2016.08.001Szirmay-Kalos, L., & Márton, G. (1998). Worst-case versus average case complexity of ray-shooting. Computing, 61(2), 103-131. doi:10.1007/bf02684409Berger, M. J., & Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3), 484-512. doi:10.1016/0021-9991(84)90073-1Min, C., & Gibou, F. (2006). A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids. Journal of Computational Physics, 219(2), 912-929. doi:10.1016/j.jcp.2006.07.019Hasbestan, J. J., & Senocak, I. (2018). Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries. Journal of Computational Physics, 368, 179-195. doi:10.1016/j.jcp.2018.04.039Pantano, C., Deiterding, R., Hill, D. J., & Pullin, D. I. (2007). A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. Journal of Computational Physics, 221(1), 63-87. doi:10.1016/j.jcp.2006.06.011Ryde, J., & Hu, H. (2009). 3D mapping with multi-resolution occupied voxel lists. Autonomous Robots, 28(2), 169-185. doi:10.1007/s10514-009-9158-3Samet, H., & Kochut, A. (s. f.). Octree approximation an compression methods. Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission. doi:10.1109/tdpvt.2002.1024101Samaniego, F., Sanchis, J., Garcia-Nieto, S., & Simarro, R. (2017). UAV motion planning and obstacle avoidance based on adaptive 3D cell decomposition: Continuous space vs discrete space. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). doi:10.1109/etcm.2017.8247533Skoldstam, M., Akesson, K., & Fabian, M. (2007). Modeling of discrete event systems using finite automata with variables. 2007 46th IEEE Conference on Decision and Control. doi:10.1109/cdc.2007.4434894Yang, Y.-H. E., & Prasanna, V. K. (2011). Space-time tradeoff in regular expression matching with semi-deterministic finite automata. 2011 Proceedings IEEE INFOCOM. doi:10.1109/infcom.2011.5934986Normativa Sobre Drones en España [2019]—Aerial Insightshttp://www.aerial-insights.co/blog/normativa-drones-espana/Disposición 15721 del BOE núm. 316 de 2017 - BOE.eshttps://www.boe.es/boe/dias/2017/12/29/pdfs/BOE-A-2017-15721.pdfVelasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835Samaniego, F., Sanchis, J., Garcia-Nieto, S., & Simarro, R. (2018). Comparative Study of 3-Dimensional Path Planning Methods Constrained by the Maneuverability of Unmanned Aerial Vehicles. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.858781

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Prismas generados por fracturas en experimentos con fécula

    Get PDF
    We present a didactic experiment of desiccation using starch-water mixture. The aim is to obtain prismatic joints similar to columns in basalt lava flows, or the desiccation fractures in sediments. Two types of joints were observed in experiments: a) the first formed joints are large, crossing completely the container used in the experiment. The intersection angles among the large joints are about 90°; b) The second joints are smaller; they develop after the large ones forming intersection angles from 90° to 140°. Both large and small joints have dips near 90° with respect the dissection surface. Using Voronoi diagrams we explained patterns which resemble the prismatic joints obtained in the experiment.Presentamos un experimento didáctico de desecación de fécula. El objetivo es obtener patrones prismáticos de fracturas, similares a los que se forman en derrames de basalto, o a las grietas de desecación en sedimentos. Se observaron dos tipos de fracturas en el experimento: a) las primeras que se formaron son grandes, cruzan completamente el contenedor utilizado en el experimento. Dichas fracturas se cruzan con ángulos muy cercanos a 90°. b) Las segundas fracturas que se forman son más pequeñas, se desarrollan después de formadas las grandes y presentan ángulos de intersección de entre 90° y 140°. Tanto las facturas grandes como las pequeñas tienen inclinaciones cercanas a 90° con respecto a la superficie de desecación. Se muestra como utilizando diagramas de Voronoi se puede obtener patrones semejantes a los arreglos de las fracturas del experimento.Palabras clave: Fracturas de desecación; Prismas columnares; Experimento de desecación; Diagramas de Voronoi.Prisms generated by joints in experiments of water-starch mixtureWe present a didactic experiment of desiccation using starch-water mixture. The aim is to obtain prismatic joints similar to columns in basalt lava flows, or the desiccation fractures in sediments. Two types of joints were observed in experiments: a) the first formed joints are large, crossing completely the container used in the experiment. The intersection angles among the large joints are about 90°; b) The second joints are smaller; they develop after the large ones forming intersection angles from 90° to 140°. Both large and small joints have dips near 90° with respect the dissection surface. Using Voronoi diagrams we explained patterns which resemble the prismatic joints obtained in the experiment.Keywords: Desiccation fractures; Basaltic prisms; Desiccation experiment; Voronoi diagrams

    Prisms generated by joints in experiments of water-starch mixture

    Get PDF
    Presentamos un experimento didáctico de desecación de fécula. El objetivo es obtener patrones prismáticos de fracturas, similares a los que se forman en derrames de basalto, o a las grietas de desecación en sedimentos. Se observaron dos tipos de fracturas en el experimento: a) las primeras que se formaron son grandes, cruzan completamente el contenedor utilizado en el experimento. Dichas fracturas se cruzan con ángulos muy cercanos a 90°. b) Las segundas fracturas que se forman son más pequeñas, se desarrollan después de formadas las grandes y presentan ángulos de intersección de entre 90° y 140°. Tanto las facturas grandes como las pequeñas tienen inclinaciones cercanas a 90° con respecto a la superficie de desecación. Se muestra cómo utilizando diagramas de Voronoi se puede obtener patrones semejantes a los arreglos de las fracturas del experimento.We present a didactic experiment of desiccation using starch-water mixture. The aim is to obtain prismatic joints similar to columns in basalt lava flows, or the desiccation fractures in sediments. Two types of joints were observed in experiments: a) the first formed joints are large, crossing completely the container used in the experiment. The intersection angles among the large joints are about 90°; b) The second joints are smaller; they develop after the large ones forming intersection angles from 90° to 140°. Both large and small joints have dips near 90° with respect the dissection surface. Using Voronoi diagrams we explained patterns which resemble the prismatic joints obtained in the experiment.5 página
    corecore