93 research outputs found

    Microhardness changes gradient of the duplex stainless steel (DSS) surface layer after dry turning

    Get PDF
    The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS) with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps

    Fatigue life under non-Gaussian random loading from various models

    Get PDF
    Fatigue test results on the 10HNAP steel under constant amplitude and random loading with non-Gaussian probability distribution function, zero mean value and wide-band frequency spectrum have been used to compare the life time estimation of the models proposed by Bannantine, Fatemi–Socie, Socie, Wang–Brown, Morel and Ɓagoda–Macha. Except the Morel proposal which accumulates damage step by step with a proper ethodology, all the other models use a cycle counting method. The rainflow algorithm is used to extract cycles from random histories of damage parameters in time domain. In the last model, where a strain energy density parameter is employed, additionally spectral method is evaluated for fatigue life calculation in the frequency domain. The best and very similar results of fatigue life assessment have been obtained using the models proposed by Socie and by Ɓagoda–Macha, both in time and frequency domains for the last one.With the support of the Commission of the European Communities under the FP5, GROWTH Programme, contract No. G1MA-CT-2002-04058 (CESTI)

    Fatigue life under non-Gaussian random loading from various models

    Get PDF
    Fatigue test results on the 10HNAP steel under constant amplitude and random loading with non-Gaussian probability distribution function, zero mean value and wide-band frequency spectrum have been used to compare the life time estimation of the models proposed by Bannantine, Fatemi–Socie, Socie, Wang–Brown, Morel and Ɓagoda–Macha. Except the Morel proposal which accumulates damage step by step with a proper ethodology, all the other models use a cycle counting method. The rainflow algorithm is used to extract cycles from random histories of damage parameters in time domain. In the last model, where a strain energy density parameter is employed, additionally spectral method is evaluated for fatigue life calculation in the frequency domain. The best and very similar results of fatigue life assessment have been obtained using the models proposed by Socie and by Ɓagoda–Macha, both in time and frequency domains for the last one.With the support of the Commission of the European Communities under the FP5, GROWTH Programme, contract No. G1MA-CT-2002-04058 (CESTI)

    Identification of the cosmogenic 11C background in large volumes of liquid scintillators with Borexino

    Get PDF
    Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic 11C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between 11C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a 11C tagging efficiency of ∌90 % and ∌ 63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically 11C produced in high-multiplicity during major spallation events. Such 11C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of ∌90% but with a higher fraction of the exposure surviving, in the range of ∌ 66–68 %

    Solar and geoneutrinos

    Get PDF
    Thanks to the progress of neutrino physics, today we are able of exploiting neutrinos as a tool to study astrophysical objects. The latter in turn serve as unique sources of elusive neutrinos, which fundamental properties are still to be understood. This contribution attempts to summarize the latest results obtained by measuring neutrinos emitted from the Sun and geoneutrinos produced in radioactive decays inside the Earth, with a particular focus on a recent discovery of the CNO-cycle solar neutrinos by Borexino. Comprehensive measurement of the pp-chain solar neutrinos and the first directional detection of sub-MeV solar neutrinos by Borexino, the updated 8B solar neutrino results of Super-Kamiokande, as well as the latest Borexino and KamLAND geoneutrino measurements are also discussed

    First Directional Measurement of sub-MeV Solar Neutrinos with Borexino

    Get PDF
    We report the measurement of sub-MeV solar neutrinos through the use of their associated Cherenkov radiation, performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The measurement is achieved using a novel technique that correlates individual photon hits of events to the known position of the Sun. In an energy window between 0.54 to 0.74 MeV, selected using the dominant scintillation light, we have measured 10 887ĂŸ2386 Ă°statÞ ïżœ 947Ă°systÞ (68% confidence interval) −2103 solar neutrinos out of 19904 total events. This corresponds to a 7Be neutrino interaction rate of 51.6ĂŸ13.9 counts=Ă°day · 100 tonÞ, which is in agreement with the standard solar model predictions and the −12.5 previous spectroscopic results of Borexino. The no-neutrino hypothesis can be excluded with > 5σ confidence level. For the first time, we have demonstrated the possibility of utilizing the directional Cherenkov information for sub-MeV solar neutrinos, in a large-scale, high light yield liquid scintillator detector. This measurement provides an experimental proof of principle for future hybrid event reconstruction using both Cherenkov and scintillation signatures simultaneously

    Experimental Detection of the CNO Cycle

    Get PDF
    Borexino recently reported the first experimental evidence for a CNO neutrino. Since this process accounts for only about 1% of the Sun’s total energy production, the associated neutrino flux is remarkably low compared to that of the pp chain, the dominant hydrogen-burning process. This experimental evidence for the existence of CNO neutrinos was obtained using a highly radio-pure Borexino liquid scintillator. Improvements in the thermal stabilization of the detector over the last five years have allowed us to exploit a method of constraining the rate of 210Bi background. Since the CNO cycle is dominant in massive stars, this result is the first experimental evidence of a major stellar hydrogen-to-helium conversion mechanism in the Universe
    • 

    corecore