27 research outputs found

    A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses

    Get PDF
    Background: Vaccine antigens targeting specific P. falciparum parasite stages are under pre-clinical and clinical development. It seems plausible that vaccine with multiple specificities will offer higher protection. With this hypothesis, we exploited the Spy- Tag/SpyCatcher conjugation system to make a, post expression, dual antigen conjugate vaccine, comprising two clinically tested antigen candidates (CSP and VAR2CSA).Methods: The DBL1x-DBL2x-ID2a region of VAR2CSA was genetically fused with SpyTag at N-terminus. The full-length CSP antigen was genetically fused to C-terminal SpyCatcher peptide. The covalent interaction between SpyTag/ SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice.Results: Serum samples obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine, as compared to mice receiving the control vaccine.Conclusion: The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine.Keywords: Malaria vaccine, Circumsporozoite protein, VAR2CSA, CSP SpyCatcher, SpyTag-DBL1x-DBL2x-ID2a, bacterial superglue, DBL1x-DBL2x-ID2a:CSP conjugat

    A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses.

    Get PDF
    Background: Vaccine antigens targeting specific P. falciparum parasite stages are under pre-clinical and clinical development. It seems plausible that vaccine with multiple specificities will offer higher protection. With this hypothesis, we exploited the SpyTag/SpyCatcher conjugation system to make a, post expression, dual antigen conjugate vaccine, comprising two clinically tested antigen candidates (CSP and VAR2CSA). Methods: The DBL1x-DBL2x-ID2a region of VAR2CSA was genetically fused with SpyTag at N-terminus. The full-length CSP antigen was genetically fused to C-terminal SpyCatcher peptide. The covalent interaction between SpyTag/SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice. Results: Serum samples obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine, as compared to mice receiving the control vaccine. Conclusion: The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine

    Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro

    No full text
    n vitro anti-plasmodial activity-guided fractionation of a diethyl ether extract of the liverwort species Marchantia polymorpha, collected in Iceland, led to isolation of the bisbibenzyl ether, marchantin A. The structure of marchantin A (1) was confirmed by NMR and HREIMS. Marchantin A inhibited proliferation of the Plasmodium falciparum strains, NF54 (IC50 = 3.41 μM) and K1 (IC50 = 2.02 μM) and showed activity against other protozoan species Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani with IC50 values 2.09, 14.90 and 1.59 μM, respectively. Marchantin A was tested against three recombinant enzymes (PfFabI, PfFabG and PfFabZ) of the PfFAS-II pathway of P. falciparum for malaria prophylactic potential and showed moderate inhibitory activity against PfFabZ (IC50 = 18.18 μM). In addition the cytotoxic effect of marchantin A was evaluated. This is the first report describing the inhibitory effects of the liverwort metabolite marchantin A against these parasites in vitro

    The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization.

    Get PDF
    Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson's disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard

    Cryo-EM reveals the conformational epitope of human monoclonal antibody PAM1.4 broadly reacting with polymorphic malarial protein VAR2CSA.

    No full text
    Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4's broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria

    PAM1.4 does not inhibit the infected erythrocytes adhesion to CSA.

    No full text
    Percentage of FCR3 VAR2CSA infected erythrocytes binding to CSA in the presence of 100 μg/ml antibodies or 500 μg/ml soluble CSA (sCSA). Control, absence of antibodies; Fab, PAM1.4 Fab fragment; PAM1.4, PAM1.4 whole IgG; high and low, corresponds to total IgG purified from a pool of plasma with high and low levels of anti-VAR2CSA, respectively; IgG, IgG isotype control. Median values ± 95% CI from two independent experiments and P values using Kruskal-Wallis test followed by Dunn’s multiple comparisons test are shown. (PDF)</p
    corecore