114 research outputs found

    Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Get PDF
    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Comparison of Ion Balance and Nitrogen Metabolism in Old and Young Leaves of Alkali-Stressed Rice Plants

    Get PDF
    BACKGROUND: Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. METHODOLOGY/PRINCIPAL FINDINGS: The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na(+) and Cl(-) in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na(+) in old leaves under alkali stress. Alkali stress mightily reduced the NO(3)(-) contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO(3)(-) was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO(3)(-) in old leaves. NO(3)(-) deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH(4)(+), which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. CONCLUSIONS/SIGNIFICANCE: Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research

    Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice

    Get PDF
    Rice restorer lines play an important role in three-line hybrid rice production. Previous research based on molecular tagging has suggested that the restorer lines used widely today have narrow genetic backgrounds. However, patterns of genetic variation at a genome-wide scale in these restorer lines remain largely unknown. The present study performed re-sequencing and genome-wide variation analysis of three important representative restorer lines, namely, IR24, MH63, and SH527, using the Solexa sequencing technology. With the genomic sequence of the Indica cultivar 9311 as the reference, the following genetic features were identified: 267,383 single-nucleotide polymorphisms (SNPs), 52,847 insertion/deletion polymorphisms (InDels), and 3,286 structural variations (SVs) in the genome of IR24; 288,764 SNPs, 59,658 InDels, and 3,226 SVs in MH63; and 259,862 SNPs, 55,500 InDels, and 3,127 SVs in SH527. Variations between samples were also determined by comparative analysis of authentic collections of SNPs, InDels, and SVs, and were functionally annotated. Furthermore, variations in several important genes were also surveyed by alignment analysis in these lines. Our results suggest that genetic variations among these lines, although far lower than those reported in the landrace population, are greater than expected, indicating a complicated genetic basis for the phenotypic diversity of the restorer lines. Identification of genome-wide variation and pattern analysis among the restorer lines will facilitate future genetic studies and the molecular improvement of hybrid rice

    Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines

    Get PDF
    BACKGROUND: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. RESULTS: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. CONCLUSIONS: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation

    Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent

    Get PDF
    We used supernetworks with datasets of nuclear gene sequences and novel markers detecting retrotransposon insertions in ribosomal DNA loci to reassess the evolutionary relationships among tetraploid wheats. We show that domesticated emmer has a reticulated genetic ancestry, sharing phylogenetic signals with wild populations from all parts of the wild range. The extent of the genetic reticulation cannot be explained by post-domestication gene flow between cultivated emmer and wild plants, and the phylogenetic relationships among tetraploid wheats are incompatible with simple linear descent of the domesticates from a single wild population. A more parsimonious explanation of the data is that domesticated emmer originates from a hybridized population of different wild lineages. The observed diversity and reticulation patterns indicate that wild emmer evolved in the southern Levant, and that the wild emmer populations in south-eastern Turkey and the Zagros Mountains are relatively recent reticulate descendants of a subset of the Levantine wild populations. Based on our results we propose a new model for the emergence of domesticated emmer. During a pre-domestication period, diverse wild populations were collected from a large area west of the Euphrates and cultivated in mixed stands. Within these cultivated stands, hybridization gave rise to lineages displaying reticulated genealogical relationships with their ancestral populations. Gradual movement of early farmers out of the Levant introduced the pre-domesticated reticulated lineages to the northern and eastern parts of the Fertile Crescent, giving rise to the local wild populations but also facilitating fixation of domestication traits. Our model is consistent with the protracted and dispersed transition to agriculture indicated by the archaeobotanical evidence, and also with previous genetic data affiliating domesticated emmer with the wild populations in southeast Turkey. Unlike other protracted models, we assume that humans played an intuitive role throughout the process.Natural Environment Research Council [NE/E015948/1]; Slovak Research and Development Agency [APVV-0661-10, APVV-0197-10]info:eu-repo/semantics/publishedVersio

    Deregulation of Sucrose-Controlled Translation of a bZIP-Type Transcription Factor Results in Sucrose Accumulation in Leaves

    Get PDF
    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S - stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5′-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5′-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3–4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content

    Facilitation and Competition among Invasive Plants: A Field Experiment with Alligatorweed and Water Hyacinth

    Get PDF
    Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed

    Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Get PDF
    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants

    Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression

    Get PDF
    Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed
    corecore