387 research outputs found

    Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy

    Get PDF
    Mougeotia spp. collected from field samples were investigated for their conjugation morphology by light-, fluorescence-, scanning- and transmission electron microscopy. During a scalarifom conjugation, the extragametangial zygospores were initially surrounded by a thin cell wall that developed into a multi-layered zygospore wall. Maturing zygospores turned dark brown and were filled with storage compounds such as lipids and starch. While M. parvula had a smooth surface, M. disjuncta had a punctated surface structure and a prominent suture. The zygospore wall consisted of a polysaccharide rich endospore, followed by a thin layer with a lipid-like appaerance, a massive electron dense mesospore and a very thin exospore composed of polysaccharides. Glycan microarray analysis of zygospores of different developmental stages revealed the occurrence of pectins and hemicelluloses, mostly composed of homogalacturonan (HG), xyloglucans, xylans, arabino-galactan proteins and extensins. In situ localization by the probe OG7-13AF 488 labelled HG in young zygospore walls, vegetative filaments and most prominently in conjugation tubes and cross walls. Raman imaging showed the distribution of proteins, lipids, carbohydrates and aromatic components of the mature zygospore with a spatial resolution of ~ 250 nm. The carbohydrate nature of the endo- and exospore was confirmed and in-between an enrichment of lipids and aromatic components, probably algaenan or a sporopollenin-like material. Taken together, these results indicate that during zygospore formation, reorganizations of the cell walls occured, leading to a resistant and protective structure

    Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems

    Get PDF
    The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.Peer reviewe

    Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive

    Get PDF
    The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 μg/m3 from impactor samples and to 24.2 μg/m3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1–8 ng/m3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5–10 μm; 1.2–3.5 μm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71μg/m3) and EC (1.25 μg/m3) was measured. The minimum of TC (0.25 μg/m3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 μg m3), calcium (0.22 vs. 0.03 μg m3) and potassium (0.33 vs. 0.02 μg m3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 μm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78–151 ng/m3) and methanesulfonic acid (MSA, 25–100 ng/m3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences

    Improved FPT algorithms for weighted independent set in bull-free graphs

    Full text link
    Very recently, Thomass\'e, Trotignon and Vuskovic [WG 2014] have given an FPT algorithm for Weighted Independent Set in bull-free graphs parameterized by the weight of the solution, running in time 2O(k5)n92^{O(k^5)} \cdot n^9. In this article we improve this running time to 2O(k2)n72^{O(k^2)} \cdot n^7. As a byproduct, we also improve the previous Turing-kernel for this problem from O(k5)O(k^5) to O(k2)O(k^2). Furthermore, for the subclass of bull-free graphs without holes of length at most 2p12p-1 for p3p \geq 3, we speed up the running time to 2O(kk1p1)n72^{O(k \cdot k^{\frac{1}{p-1}})} \cdot n^7. As pp grows, this running time is asymptotically tight in terms of kk, since we prove that for each integer p3p \geq 3, Weighted Independent Set cannot be solved in time 2o(k)nO(1)2^{o(k)} \cdot n^{O(1)} in the class of {bull,C4,,C2p1}\{bull,C_4,\ldots,C_{2p-1}\}-free graphs unless the ETH fails.Comment: 15 page

    A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber

    Get PDF
    A detailed understanding of interactions of aerosols, cloud droplets/ice crystals, and trace gases within the atmosphere is of prime importance for an accurate understanding of Earth’s weather and climate. One aspect that remains especially vexing is that clouds are ubiquitously turbulent, and therefore thermodynamic and compositional variables, such as water vapor supersaturation, fluctuate in space and time. With these problems in mind, a multiphase, turbulent reaction chamber—called the Π chamber because of the internal volume of 3.14 m3 with the cylindrical insert installed—has been developed. It is capable of pressures ranging from 1,000 to –60 hPa and can sustain temperatures of –55° to 55°C, thereby spanning much of the range of tropospheric clouds. To control the relative humidity in the chamber, it can be operated with a stable, unstable, or neutral temperature difference between the top and bottom surfaces, with or without expansion. A negative temperature difference induces turbulent Rayleigh–Bénard convection and associated supersaturation generation through isobaric mixing. Supporting instrumentation includes a suite of aerosol generation and characterization techniques; temperature, pressure, and humidity sensors; and a phase Doppler interferometer. Initial characterization experiments demonstrate the ability to sustain steady-state turbulent cloud conditions for times greater than 1 day, with droplet diameters typically in the range of 5–40 µm. Typical turbulence has root-mean-square velocity fluctuations on the order of 10 cm s–1 and kinetic energy dissipation rates of 1 × 10–3 W kg–1
    corecore