29 research outputs found

    Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Get PDF
    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump – X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new “modular” X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the GrĂŒneisen parameters was found to be e / i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the ablation threshold were revealed. Such results were possible to obtain, due to the unprecedented combination of a short X-ray pulse duration and brightness at the SPPS

    Unraveling the mechanism of NO ligand photoisomerism by time-resolved infrared spectroscopy

    Get PDF
    International audienceUV-Vis- and infrared femtosecond spectroscopy makes it possible to reveal all different steps of photochemical reactions after the electronic excitation. The electronic relaxations are observed in the UV-Vis spectral range whereas the nuclear motions are monitored in the infrared spectral range. We used femtosecond time-resolved infrared spectroscopy to demonstrate the photoisomerization of the NO ligand photoinduced by a visible femtosecond pulse in a Na2[Fe(CN)5NO]*2H2O single crystal occurs in about 350 fs. The analysis of data makes it possible to unravel the mechanism leading to the photoisomerization of the NO ligand

    Time-resolved diffraction with an optimized short pulse laser plasma X-ray source

    Full text link
    We present a set-up for time-resolved X-ray diffraction based on a short pulse, laser-driven plasma X-ray source. The employed modular design provides high flexibility to adapt the set-up to the specific requirements (e.g. X-ray optics, sample environment) of particular applications. The configuration discussed here has been optimized towards high angular/momentum resolution and uses Kα_{\alpha}-radiation (4.51 keV) from a Ti wire-target in combination with a toroidally bent crystal for collection, monochromatization and focusing of the emitted radiation. 2×1052\times 10^5 Ti-Kα1_{\alpha1} photons per pulse with 10−410^{-4} relative bandwidth are delivered to the sample at 10 Hz repetition rate. This allows for high dynamic range (10410^4) measurements of transient changes of the rocking curves of materials as for example induced by laser-triggered strain waves.Comment: 29 pages, 8 figure

    Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials

    Get PDF
    6 pags., 5 figs.In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials AgInSbTe and GeSb at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.F.Q., A.K., M.N., and K.S.T. gratefully acknowledge financial support from the German Research Council through the Collaborative Research Center SFB 1242 project 278162697 (“Non-Equilibrium Dynamics of Condensed Matter in the Time Domain”), project C01 (“Structural Dynamics in Impulsively Excited Nanostructures”), and individual grant So408/9-1, as well as the European Union (7th Framework Programme, grant no. 280555 GO FAST). M.J.S., R.M., and M.W. acknowledge financial support from the German Research Council through the Collaborative Research Center SFB 917 (“Nanoswitches”) and individual grant Ma-5339/2-1. M.J.S., I.R., and R.M. also acknowledge the computational resources granted by JARA-HPC from RWTH Aachen University under project nos. JARA0150 and JARA0183. M.T., A.M.L., and D.A.R. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through the Division of Materials Sciences and Engineering under contract no. DE-AC02-76SF00515. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. J.L. acknowledges support from the Swedish Research Council. J.S. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through research grant UDiSON (TEC2017-82464-R). P.Z. gratefully acknowledges funding by the Humboldt Foundatio

    Density response to short-pulse excitation in gold

    Get PDF
    We investigate the dynamics of band occupation in gold after excitation with short laser pulses. Strong non‐equilibrium distributions can be created by intra‐ and inter‐band transitions driven by the absorption of photons with different wavelengths. First, we briefly discuss how photons can be used as a probe and how electrons with non‐Fermi distributions can be described. Then we focus on the relaxation stage where a temperature has been established but the occupation numbers in the different bands are not yet in equilibrium with this newly established elevated temperature. We describe the relaxation towards a system with a common chemical potential with rate equations that also include the energy transfer to the lattice or ions. Finally, we give an outlook on the optical response of the relaxing electron system to a probe pulse of radiation

    The Role of Thermal and Electronic Pressure in the Picosecond Acoustic Response of Femtosecond Laser-excited Solids

    No full text

    Monochromatic X-ray backlighting imaging with toroidally bent crystal

    No full text
    corecore