1,188 research outputs found

    Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates

    Get PDF
    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge

    The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    Full text link
    © 2016 John Wiley & Sons Ltd Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. We used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (∆T) and temperature range across laminae (Trange) during winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (we), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but we strongly predicted τ and ∆T, whereas leaf area influenced Trange. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection

    Effects of warming temperatures on germination responses and trade-offs between seed traits in an alpine plant

    Get PDF
    1. Climate warming may affect multiple aspects of plant life history, including important factors such as germination responses and the key trade-off between offspring size and number. As a case study to address these concepts, we used an alpine plant (waxy bluebell, Wahlenbergia ceracea; Campanulaceae) that shows plasticity to warming in seed traits and in which seed dormancy status regulates germination. We chose an alpine species because alpine environments are ecosystems particularly under threat by climate change. 2. We conducted germination assays under cool and warm temperatures using seeds produced by individuals that were grown under historical (cooler) and future (warmer) temperature scenarios. We assessed the presence of a seed size vs number trade-off, and then examined the effects of seed number and size on germination percentage, the fractions of dormant and viable seeds, and germination velocity. Further, we examined whether warming during parental growth and during germination affected these relationships. 3. We found evidence for a seed size vs number trade-off only under historical parental temperatures. Indeed, under future growth temperatures, parental plants produced fewer and smaller seeds and there was no evidence of a trade-off. However, the reductions in both seed traits under warming did not affect germination, despite correlations of seed size and number with germination traits. Warming increased germination, particularly of larger seeds, but overall it resulted in more than fourfold reductions in parental fitness. 4. Synthesis. Our study shows the importance of growth conditions when evaluating the seed size vs number trade-off. Stressful conditions, such as warmer temperatures, can restrain the ability of plants to reach optimal investment in reproduction, masking the trade-off. By analysing responses across the whole life cycle, we show here an overall detrimental effect of warming, highlighting the potential risk of climate change for W. ceracea, and, potentially, for alpine plant communities more widely.Files can be opened using Excel and analysed using R.Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP170101681Experiments were conducted using the plant species Wahlnebrgia ceracea (waxy bluebells). Two datasets were used in this manuscript. 1) Seed size vs number trade-off: Parental individuals from a total of 30 lines ('Line') were grown in growth chambers for 191 days under temperature conditions of a historical/cooler (1960–1970) or a projected future/warmer (2090–2100) climate ('Parental_Temperature'). The parental individuals were randomly assigned to one of three blocks, which corresponded to positions inside the chambers, and each block was equivalent in all chambers ('Block'). Day and night temperatures during the experiment were changed every 15 days to mimic seasonality, with the maximum day temperatures during the peak of summer being 24°C and 29°C for the historical and future parental temperatures, respectively. After 100 days since the imposition of the temperature treatments (during the peak of the summer), half of the plants were moved for 5 days to new chambers, where the temperature was 5°C above the respective treatments, i.e., 29°C and 34°C ('Heatwave'). After this time, the parental individuals were moved back to their respective historical or future temperature treatments. We collected the seeds throughout the 191 days of parental growth, and we stored them in desiccators for at least 11 weeks. After this time, we calculated seed size ('Seed_Size') as the average mass of three lots of 50 seeds divided by 50. We calculated seed number ('Seed_Number') as the ratio between the cumulative mass of the seeds produced by each parental individual and seed size. The 30 lines of the parental individuals were obtained by crossing plants that originated from seeds that were collected at the same elevation, either high or low elevation ('Elevation') in sites within Kosciuszko National Park, NSW, Australia. Therefore, 14 lines originated from high elevations and 14 lines from low elevations. 2) Germination responses - seed traits correlations: The seeds were harvested from the parental individuals grown under historical/cooler or projected future/warmer temperatures ('Parental_Temperature') (see above) from a subset of 14 lines ('Line'). These seeds were used in germination assays in the glasshouse under cool (25°C) or warm temperatures (30°C) ('Germination_Temperature'). We measured seed size ('Seed_Size') as the average mass of three lots of 50 seeds; then these seeds were sowed in agar dishes (25 seeds per dish, 2 dishes per temperature treatment from each parental individual). Seed number ('Seed_Number') was the same as above. Dishes were left under temperature treatments for 4 weeks to allow germination of the non-dormant fraction of the seeds ('Not_Dormant_Seeds') and germination was checked once per week. Then, all the dishes were moved to a cold room at 4–5°C in the dark for 4 weeks to allow cold stratification. After this time, dishes were moved back to the glasshouse under the same temperature treatments as before to allow germination of the dormant seeds. We considered seeds to be dormant ('Dormant_seeds') if they germinated during or after cold stratification or if they did not germinate at all but were still determined to be viable at the end of the experiment. We considered seed to be viable ('Viable_Seeds') if they germinated ('Germinated_Seeds') as well as the seeds that contained an endosperm but still did not germinate ('Not_Germinated_Seeds'), while we considered empty seeds as non-viable ('Not_Viable_Seeds'). Germinated and not germinated seeds (as above) were used to calculate the germination percentage. We calculated germination velocity ('Germination_Velocity') as the reciprocal of the mean germination time (germination velocity (germination (%) week-1) GV = (G1 + G2 +…+ Gn) / (G1 x T1 + G2 x T2 +…+ Gn x Tn), where Gn is the number of new germinating seeds at each sampling point, and Tn is the time between each sampling point (= one week). The files provided present the datasets in their first sheet and keys with the definitions of each term in the second sheet

    Tolerance of warmer temperatures does not confer resilience to heatwaves in an Alpine herb

    Get PDF
    Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.This research was supported by the Australian Research Council (DP170101681), an International Ph.D. Scholarship to RN and an ARC Future Fellowship FT110100453 to LK. Research grants funded all research related costs (such as renting growth chambers or buying equipment), while the scholarship paid a stipend to RN

    Smoking, haptoglobin and fertility in humans

    Get PDF
    A prospective study on two samples of consecutive puerperae (total n° 667) from two populations has been carried out in order to investigate the possible effect of smoking habit on relationship between fertility and haptoglobin phenotype

    Phosphotyrosine-protein-phosphatases and human reproduction: an association between low molecular weight acid phosphatase (ACP1) and spontaneous abortion.

    Get PDF
    ACP1 (low molecular weight acid phosphatase) genetic polymorphism has been studied in 173 women with a history of two or more consecutive spontaneous abortions and in 1508 control subjects, including 482 normal pregnant women. The proportion of carriers of ACP1 *C allele (* A/ *C, *B/*C) in women with a history of repeated spontaneous abortion is lower than in normal pregnant women and other control groups, Women with repeated spontaneous abortion show a specific decrease of ACPI S isoform concentration as compared to normal pregnant women, The other component of ACP I activity, the F isoform, does not show a significant difference between the two groups. The data suggest that women with ACP1 genotypes showing a high concentration of S isoform are relatively 'protected' against spontaneous abortion, Preliminary analysis of a sample of 352 normal puerperae along with their newborn babies supports this hypothesis

    Catalytic mechanism and role of hydroxyl residues in the active site of theta class Glutathione-S-Transferases: Investigation of Ser-9 and Tyr-113 in a Glutathione S-Transferase from the australian sheep blowfly Lucilia cuprina

    Get PDF
    Abstract Spectroscopic and kinetic studies have been performed on the Australian sheep blowfly Lucilia cuprina glutathione S-transferase (Lucilia GST; EC 2.5.1.18) to clarify its catalytic mechanism. Steady state kinetics of Lucilia GST are non-Michaelian, but the quite hyperbolic isothermic binding of GSH suggests that a steady state random sequential Bi Bi mechanism is consistent with the anomalous kinetics observed. The rate-limiting step of the reaction is a viscosity-dependent physical event, and stopped-flow experiments indicate that product release is rate-limiting. Spectroscopic and kinetic data demonstrate thatLucilia GST is able to lower the pK a of the bound GSH from 9.0 to about 6.5. Based on crystallographic suggestions, the role of two hydroxyl residues, Ser-9 and Tyr-113, has been investigated. Removal of the hydroxyl group of Ser-9 by site-directed mutagenesis raises the pK a of bound GSH to about 7.6, and a very low turnover number (about 0.5% of that of wild type) is observed. This inactivation may be explained by a strong contribution of the Ser-9 hydroxyl group to the productive binding of GSH and by an involvement in the stabilization of the ionized GSH. This serine residue is highly conserved in the Theta class GSTs, so the present findings may be applicable to all of the family members. Tyr-113 appears not to be essential for the GSH activation. Stopped-flow data indicate that removal of the hydroxyl group of Tyr-113 does not change the rate-limiting step of reaction but causes an increase of the rate constants of both the formation and release of the GSH conjugate. Tyr-113 resides on α-helix 4, and its hydroxyl group hydrogen bonds directly to the hydroxyl of Tyr-105. This would reduce the flexibility of a protein region that contributes to the electrophilic substrate binding site; segmental motion of α-helix 4 possibly modulates different aspects of the catalytic mechanism of theLucilia GST
    corecore