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Abstract
1.	 Climate warming may affect multiple aspects of plant life history, including im-

portant factors such as germination responses and the key trade-off between 
offspring size and number. As a case study to address these concepts, we used 
an alpine plant (waxy bluebell, Wahlenbergia ceracea; Campanulaceae) that 
shows plasticity to warming in seed traits and in which seed dormancy status 
regulates germination. We chose an alpine species because alpine environments 
are ecosystems particularly under threat by climate change.

2.	 We conducted germination assays under cool and warm temperatures using 
seeds produced by individuals that were grown under historical (cooler) and fu-
ture (warmer) temperature scenarios. We assessed the presence of a seed size 
versus number trade-off, and then examined the effects of seed number and 
size on germination percentage, the fractions of dormant and viable seeds, and 
germination velocity. Further, we examined whether warming during parental 
growth and during germination affected these relationships.

3.	 We found evidence for a seed size versus number trade-off only under histori-
cal parental temperatures. Indeed, under future growth temperatures parental 
plants produced fewer and smaller seeds and there was no evidence of a trade-
off. However, the reductions in both seed traits under warming did not affect 
germination, despite correlations of seed size and number with germination 
traits. Warming increased germination, particularly of larger seeds, but overall, it 
resulted in more than fourfold reductions in parental fitness.

4.	 Synthesis. Our study shows the importance of growth conditions when evaluat-
ing the seed size versus number trade-off. Stressful conditions, such as warmer 
temperatures, can restrain the ability of plants to reach optimal investment in 
reproduction, masking the trade-off. By analysing responses across the whole 
life cycle, we show here an overall detrimental effect of warming, highlighting 
the potential risk of climate change for Wahlenbergia ceracea, and, potentially, for 
alpine plant communities more widely.
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1  |  INTRODUC TION

Offspring size and number are life-history traits assumed to trade-
off in any living organism (Smith & Fretwell,  1974). In plants, this 
trade-off manifests at the seed level, that is, between the size and 
number of seeds. The production of a progeny of better quality 
(larger) or larger numbers are both adaptive strategies insofar they 
increase parental reproductive success (Geritz et al.,  1999; Moles 
& Westoby, 2006; Westoby et al., 2002). Specifically, the produc-
tion of larger seeds provides the offspring with more resources 
increasing seedling establishment, particularly during unfavour-
able conditions; whereas, the production of more seeds allows to 
build a denser seed bank, therefore increasing seedling recruitment 
over time (Geritz et al.,  1999; Moles & Westoby,  2006; Saatkamp 
et al., 2009; Westoby et al., 2002). The trade-off arises because ac-
cess to resources is limited (Smith & Fretwell,  1974) and the out-
come of the trade-off varies between species and environmental 
conditions (Jessup & Bohannan, 2008; Koricheva, 2002). Although 
the seed size versus number trade-off in plants has been found 
within fruits, and at the interspecific level, there has been mixed 
support for this trade-off at the intraspecific level. Species show 
negative, neutral, and positive relationships between seed size and 
number (Brancalion & Rodrigues, 2014; Guo et al., 2010; Lázaro & 
Larrinaga, 2018).

The study of the seed size versus number trade-off is crucial 
in plants because seed traits, and particularly seed size (the mass 
of one seed), affect seed germination, one of the most vulnerable 
stages of a plant's life cycle (Matías et al., 2011; Wong et al., 2012). 
Larger seeds are generally associated with higher germination rates, 
higher germination velocity (the reciprocal of mean germination 
time; Kotowski,  1926; Ranal & Garcia de Santana,  2006), higher 
seedling growth rate, and higher survival (Benard & Toft,  2007; 
Domic et al., 2020; Ge et al., 2020; Veselá et al., 2021). However, ev-
idence of a negative relationship between seed size and germination 
rate has been found in some alpine species (Ge et al., 2020).

Seed size might also affect other aspects of the germination 
response, such as dormancy levels, which describe the degree to 
which seeds are responsive to the environmental conditions that 
trigger germination (Batlla & Benech-Arnold, 2010; Finch-Savage & 
Leubner-Metzger, 2006; Vleeshouwers et al., 1995). To increase the 
potential of successful seedling recruitment during favourable times 
of the year, many alpine plant species stagger their germination 
across seasons (Hoyle et al.,  2015). Alpine ecosystems are unpre-
dictable and heterogeneous environments, where climatic condi-
tions can vary abruptly both spatially and temporally (Körner, 2003), 
potentially reducing germination success and seedling survival. 
Therefore, some alpine species produce both seeds that germinate 
as soon as they are dispersed, and others that remain dormant in 

the seed bank until specific environmental requirements are met 
(usually a period of exposure to low temperatures, the end of 
which signals snowmelt and the start of the growing season, Hoyle 
et al., 2015; Satyanti et al., 2019). Because of the differences in size, 
large and small seeds may have different dormancy levels. For ex-
ample, Liyanage and Ooi  (2018) found that in species that require 
fire to germinate, larger seeds need lower temperatures to break 
dormancy. A worldwide survey showed that smaller seeds are more 
likely to be dormant in legumes (Rubio de Casas et al., 2017). In con-
trast, for the alpine herb Oreomyrrhis eriopoda, populations with a 
larger average seed mass are associated with a postponed germina-
tion strategy, where all seeds were dormant (Satyanti et al., 2019). 
Thus, there seems to be considerable variation among species in the 
relationship between seed mass and germination that needs further 
consideration.

In contrast to the work to date on seed mass and germination, 
the relationship between seed number and germination responses 
has seldom been investigated. Seed number might be expected to 
be positively correlated with dormant seed fractions. Indeed, when 
dispersal is low, the seedlings originating from large batches of seeds 
are expected to be under higher competition (Campbell et al., 2017; 
Lampei et al., 2017). By scattering germination across seasons pa-
rental plants may therefore reduce the level of competition among 
seedlings and increase potential recruitment over time.

Global warming due to climate change will expose plants and their 
seeds to novel climatic conditions and likely affect seed germination 
responses (Gremer et al., 2020) with potential impact upon popula-
tion dynamics and persistence of species. The timing of germination 
is crucial for survival because it determines the immediate environ-
mental conditions that the seedling will face (Gremer et al., 2020). 
As such, germination triggered by environmental cues, particularly 
temperature and precipitation, ensures that seedlings emerge in the 
appropriate season and under favourable conditions (Fernández-
Pascual et al., 2021; Finch-Savage & Leubner-Metzger, 2006; Puglia 
et al., 2018). Ultimately, the proportion of seeds that survive to ger-
minate and establish determines the fitness of the parents (Campbell 
et al.,  2017; Erb,  2018). However, climate change may decouple 
the relevant environmental cues from the conditions to which the 
offspring is exposed at germination, making the cues less reliable 
(Bonamour et al., 2019; Walck et al., 2011).

Alpine environments are considered particularly threatened by 
climate change. In these environments, temperatures have increased 
at a rate twice as fast as lowland ecosystems (Gobiet et al., 2014). 
As a result, rising temperatures are causing a contraction and an 
upward shift of the range of alpine species (Bueno de Mesquita 
et al., 2018; Parolo & Rossi, 2008). However, mountain summits rep-
resent physical barriers to further dispersal. The consequences of 
climate change are already evident in alpine environments, where 

K E Y W O R D S
alpine environments, fitness, germination responses, parental effects, phenotypic plasticity, 
seed dormancy, size vs. number trade-off, warming
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warming temperatures are resulting in more frequent heat stress, 
earlier snowmelt, earlier flowering dates, later snowfall, and lon-
ger growing seasons (Carbognani et al.,  2016; Harris et al.,  2016; 
Kudo, 2020; Nicotra et al., 2015). Therefore, alpine plants provide 
a relevant system to explore how novel temperature regimes pre-
dicted for the future can affect germination and the relationship be-
tween seed traits and germination responses.

Plants can influence germination strategy and dormancy levels 
of their seeds in response to their environment, where the tem-
perature is one of the most important cues to such parental effects 
(Lampei et al., 2017; Penfield & MacGregor, 2016). Parental plants 
may respond to warmer growth conditions by either increasing 
the germination velocity and reducing the proportion of dormant 
seeds so that germination occurs in the season of dispersal, or by 
increasing dormant seed fractions, to avoid heat stress, cold spells, 
and other unpredictable late autumn weather extremes. Although 
warmer temperatures during seed development are sometimes as-
sociated with decreased dormancy (Bernareggi et al., 2016; Penfield 
& MacGregor, 2016), Wang et al. (2021) showed an increase in the 
dormant seed fraction in the Australian alpine plant Wahlenbergia 
ceracea when parents were grown under warm temperatures. There 
is also evidence that parental individuals can influence seed size in 
response to warmer growth temperatures (Nakagawa et al., 2020; 
Penfield & MacGregor, 2016). Therefore, if a relationship exists be-
tween seed size and dormancy levels, then parental control over seed 
dormancy may be exerted through changes in seed size. However, 
research on parental effects on germination in alpine plants is still 
scarce and whether parental effects on germination are mediated 
through changes in seed size is still an open question.

Parental effects that influence seed size should also affect seed 
number under the assumption of a seed size versus number trade-
off (Paul-Victor & Turnbull, 2009; Smith & Fretwell, 1974; Westoby 
et al., 1992). Investment in either life-history strategy should be ac-
companied by a change in the opposite direction in the other trait. 
Whether this has potential repercussions to germination responses 
has, to our knowledge, never been tested. Alternatively, if responses 
in both seed traits are in the same direction, due for example, to 
limiting environmental conditions that affect the optimal investment 
to reproduction, the trade-off will disappear. Therefore, investigat-
ing whether and how warmer temperatures during growth and seed 
development affect the seed size versus number trade-off in plants 
is an important question, particularly in the context of a warming 
climate.

Here, we sought to answer the following questions by using 
W. ceracea as a case study: (1) Is there a seed size versus number 
trade-off? (2) Do seed size and number influence germination re-
sponses, such as germination percentage, germination velocity, dor-
mant seed proportion and the viability of seeds? (3) Does climate 
warming during parental growth or during germination affect all 
these relationships? Previous work with W. ceracea has shown that 
individuals decrease both seed size and number and produce higher 
fractions of dormant seeds when grown under future projected (i.e., 
warmer) temperatures (Notarnicola et al., 2021; Wang et al., 2021). 

To answer our three current questions, we conducted a germination 
experiment in glasshouses under cool or warm temperatures using 
seeds developed under temperature conditions that mimicked a his-
torical/cooler (1960–1970) and a future/warmer projected (2090–
2100) climate. The focus of this study was on temperature effects 
on germination, so we therefore did not consider the reductions 
in precipitation and snow cover that are also projected for many 
mountain ranges under a changing climate (Hock et al., 2019). We 
summarise and interpret results to predict fitness consequences of 
growth under future temperatures for alpine plants.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

Wahlenbergia ceracea Lothian (Campanulaceae; waxy bluebell) is 
a short-lived perennial/biennial herb, endemic to Australia. The 
plant is 10–60 cm tall and grows among dense vegetation in moist 
sites in alpine and sub-alpine environments (Nicotra et al.,  2015). 
Wahlenbergia ceracea is hermaphroditic, facultatively autogamous 
and produces very small seeds (average mass of one seed is 22.5 μg; 
Notarnicola et al., 2021) in brown cylindrical capsules. Seeds are dis-
persed by wind at maturity. This species has a staggered germination 
strategy (Wang et al., 2021) with some seeds germinating in autumn 
and others requiring a period of low temperatures (cold stratifica-
tion), to alleviate dormancy. Dormant seeds presumably germinate 
once snow melts (spring germination) or in subsequent seasons if 
they are deeply dormant. Wahlenbergia ceracea shows plasticity in 
response to high temperatures for several traits, including seed traits 
(Nicotra et al., 2015; Notarnicola et al., 2021; Wang et al., 2021). On 
average, reductions in seed size and number were observed under 
warmer growth temperatures, but the consequences on germination 
responses and parental success, as well as whether the two traits 
trade-off have not been previously examined.

2.2  |  Experimental conditions to generate seeds

Parental individuals (F1 generation) were obtained from targeted 
crosses between individuals grown from field collected seeds (F0 
generation). The F0 seeds were collected in Kosciuszko National 
Park (New South Wales, Australia) in March 2015 and April 2016. 
F0 individuals were grown in the glasshouse under 20/15°C day/
night, natural photoperiod, and were crossed to obtain the parental 
individuals for this study. We refer to each cross as a line. Parental 
individuals (n = 321) from a total of 30 lines were grown in growth 
chambers under temperature conditions of a historical/cooler (maxi-
mum day temperature: 24°C) and a future/warmer (maximum day 
temperature: 29°C) climate scenario. We will refer to these treat-
ments respectively as parental historical and future temperatures 
from now on to distinguish from treatments during germination (see 
below). Growth temperatures and photoperiod during the lifetime 
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of the parental individuals were changed every 15 days to mimic 
seasonality (Figure 1) and there was a day/night temperature cycle. 
All mature capsules were collected over the lifetime of the parental 
individuals, for a total of 191 days (Figure 1). In total, 236 out of 321 
total parental plants produced some seed. We stored the capsules 
and seed in a desiccator at room temperature (20°C, RH  =  15%–
20%) for at least 11 weeks. Dry storage can induce after-ripening 
and reduce dormancy of seeds of some species (Baskin et al., 2006; 
Baskin & Baskin, 2020), however this procedure was necessary to 
reduce the excess moisture and humidity from capsules during col-
lection. After this time, we measured seed size as the average mass 
of three lots of 50 seeds divided by 50. We also derived the total 
seed production (seed number) as the ratio between the cumulative 
mass of the seeds produced by each parent individual and seed size.

2.3  |  Germination experiment

The germination assays included seeds collected from a sub-sample 
of 14 lines. We aimed to use six individuals from each line, three 
from each parental temperature, however, we could not achieve a 
balanced design because parental individuals grown under future 

temperatures produced fewer seeds, with many lines producing no 
seed or immature seeds. We included lines in which at least one in-
dividual produced capsule under future temperatures; however, for 
three lines all the parents grown under future temperature produced 
only empty capsules or immature seeds and ultimately could not be 
used in this experiment. Individuals of one line produced on average 
more than 20,000 seeds and this line was removed from the analysis 
because it exerted undue leverage. A list of the lines and the cor-
responding number of parents are given in Table S1. We used seeds 
collected when each parent was at its peak of seed production.

Seeds were sown in 1% water agar in 50 mm Petri dishes (25 seeds/
dish) and moved into the glasshouse under cool (25/18°C day/night) 
and warm (30/25°C day/night) germination temperatures (Figure 1). 
The 25°C of the cool treatment were found to be the optimal tem-
perature for germination in W. ceracea (Arnold et al., 2022); we raised 
the temperature by 5°C (30°C) in the warm treatment. We moved 
seeds into new Petri dishes whenever dishes started to dry out. We 
obtained two replicates for each parental individual per germination 
temperature (the design was 14 lines × 3 parental individuals × 2 pa-
rental temperatures × 2 germination temperatures × 2 replicates, how-
ever due to some lines and individuals producing no seed the final 
number of dishes was 200). Dishes were left under these conditions 

F I G U R E  1  Summary of the experimental design. Parental individuals (top) were grown under projected temperatures of a historical/
cooler (1960–1970) and a future/warmer (2090–2100) climate. Day and night temperatures were changed fortnightly to mimic seasonality. 
Day temperatures during parental growth under the two treatments are presented in the graph (top-right). During parental growth, all seeds 
were harvested to measure seed size (the average weight of one seed, μg) and seed number. These seeds were then used in germination 
assays in the glasshouse under cool (25°C) and warm (30°C) temperatures to measure germination percentage, dormant seed fractions, 
germination velocity, and viable seed fractions (bottom).
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in the glasshouse for 4 weeks to allow germination of the nondor-
mant fraction of the seeds. Germination was checked once per week, 
where the seed was considered to have germinated once the radicle 
had emerged. All dishes were then moved to a cold room at 4–5°C in 
the dark for 4 weeks for cold stratification (after Wang et al., 2021). 
Seeds that germinated during cold stratification were included in the 
count of total germination and the fraction of dormant seeds. After 
cold stratification, seeds were moved back to the glasshouse at the 
same temperatures as before to allow germination of dormant seeds. 
Germination was again checked once per week until there was no 
new germination (8 weeks). Finally, the remaining seeds in each dish 
that had not germinated were dissected with a scalpel under the 
microscope to check for viability. Germinated seeds and seeds with 
an endosperm that did not germinate (deeply dormant seeds) were 
considered as viable and added to the count of dormant seeds, while 
empty seeds were considered nonviable. Therefore, we considered as 
dormant (1) seeds that germinated during 4 weeks of cold stratifica-
tion; (2) seeds that germinated after cold stratification; and (3) seeds 
that did not germinate but were viable. The final germination percent-
age (GP) was calculated as the percentage of seeds that successfully 
germinated out of the initial number of viable seeds.

We calculated germination velocity as the reciprocal of the mean 
germination time (germination velocity (germination [%] week−1) 
GV  =  (G1 + G2 + ⋯ + Gn)/(G1 × T1 + G2 × T2 + ⋯ + Gn × Tn), where Gn is 
the number of new germinating seeds at each sampling point, and Tn 
is the time between each sampling point (= 1 week); Kotowski, 1926; 
Ranal & Garcia de Santana, 2006). The fitness index was calculated as 
the product of seed number and GP.

2.4  |  Statistical analysis

We conducted all statistical analyses in R v4.0.2 (R Core Team, 2020). 
We analysed the seed size versus number trade-off with a nested, 
linear mixed effects regression model with random intercepts, using 
the lmer function in the ‘lme4’ r package (Table S2). Seed size was the 
response variable. To increase the robustness and accuracy of the 
statistical analysis, we included data from all parents that produced 
realistic numbers of seeds and of a realistic size (n = 229). Fixed ef-
fects were parental temperature (‘historical’ or ‘future’), and the two-
way interaction between seed number and parental temperature. 
The random effect was line (14 lines) (Table S2). We considered in the 
model additional factors that were relevant during parental growth 
(elevation of origin, a heatwave treatment, and block randomization; 
Table S3). However, likelihood ratio tests (LRTs) between the models 
that included these fixed effects and those that did not were never 
significant (Table S3), and therefore for simplicity and consistency we 
have excluded these fixed effects from our analyses here.

We analysed the effect of seed size and number on four differ-
ent measures: (i) germination percentage (GP), (ii) the proportion of 
dormant seeds, (iii) germination velocity, and (iv) the proportion of vi-
able seeds. To analyse (i), (ii), and (iv) we used generalised linear mixed 
effect regression models (GLMMs) with random intercepts using the 

glmer function in the ‘lme4’ r package (Bates et al., 2015), with a bino-
mial distribution of the data (Table S2); whereas to analyse (iii) we used 
linear mixed effects regression models (LMMs) with random inter-
cepts with the lmer function (Table S2). The total number of trials from 
which proportions were obtained was the number of viable seeds 
per dish. The fixed effects were seed size, seed number, germination 
temperature (‘cool’ or ‘warm’), parental temperature (‘historical’ or ‘fu-
ture’), and the two-way interactions between seed size and number 
with germination temperature and parental temperature. Seed size 
and number were scaled in each of the models considered. For the 
analysis of seed viability, a quadratic term for seed size was included 
as fixed effect to meet the assumption of normality of the simulated 
residuals (see below). The random effects were lines and parental IDs 
nested within germination temperature (2 dishes from each parental 
individual per temperature treatment) (Table  S2). Significant differ-
ences in the intercept of plastic responses between lines were tested 
using an LRT between the full random intercept model and a model 
without the random effect ‘line’. Random slopes for the responses of 
lines to temperature (germination temperature | line) and to parental 
temperature (parental temperature | line) were tested but were never 
significant and we excluded them from the final analyses.

In all cases, we analysed the main effects using models without 
interactions, and tested for an effect of interactions using the full 
models with interactions as described above. To determine whether 
there was statistical support for an effect of factors and interactions 
on traits, we evaluated p-values from each model, using the summary 
function of the ‘lmerTest’ r package (Kuznetsova et al., 2017).

We verified the assumptions of independence and normality of 
residuals by plotting residuals from the LMMs. We checked assump-
tions for GLMMs by plotting simulated residuals (obtained with the 
function simulateResiduals with 500 simulations) with the function 
plotResiduals from the ‘DHARMa’ r package (Hartig, 2019).

3  |  RESULTS

3.1  |  Seed size versus number trade-off in  
W. ceracea

We found only weak statistical evidence for a seed size versus num-
ber trade-off in W. ceracea (Table  1). The slope of the correlation 
was negative and significant only under cooler (historical) parental 
growth temperatures (p-value = 0.043; future parental growth tem-
perature: p-value = 0.465; Table 1; Figure 2).

3.2  |  Effects of seed traits on 
germination responses

Neither seed size nor seed number affected germination percentage 
(GP) (p-values: seed size = 0.929; seed number = 0.233) or dormant 
seed fraction (p-values: seed size  =  0.576; seed number  =  0.074) 
in the main effect model (Table  2; Figure  3a–d). Seed number was 
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positively correlated to the dormant seed fraction in the full model  
(p-value = 0.035); because the slope was significant only under histori-
cal parental climates this effect only appears significant in the full model 
(Table S5). Larger seeds germinated more quickly (p-value = 0.029) and 
were more viable (p-value = 0.001) but there was no relationship be-
tween seed number and the velocity of germination (p-value = 0.447) 
or seed viability (p-value = 0.162) (Table 2; Figures 3e,f and 4).

3.3  |  Effects of warming temperatures 
on the relationships between seed traits and 
germination responses

Overall, warm temperatures during germination greatly enhanced 
germination percentages (GP) and increased the velocity of germi-
nation (Table 2; Figure 3). Seed size affected GP via interactions with 
germination temperature (Table 2; Figure 3a). Warm temperatures 
induced germination mostly of larger seeds (p-value = 0.028), while 
cool temperatures resulted in higher germination success of smaller 
seeds (Table 2; Figure 3a).

We found no evidence of an interaction between seed traits and 
parental temperature on seed viability (p-values: seed size  =  0.915; 
seed number  =  0.051) (Figure  4), GP (p-values: seed size  =  0.201; 
seed number  =  0.201), dormant seed proportions (p-values: seed 
size = 0.389; seed number = 0.220), or germination velocity (p-values: 
seed size = 0.692; seed number = 0.661) (Table 2). Therefore, there 

was no indication that the reductions in seed size and number under 
future (warmer) temperatures affected germination responses. The 
negative correlation between seed number and seed viability under fu-
ture parental temperatures was marginally not significant (Figure 4b).

As expected, parents grown under future, warmer tempera-
tures produced a higher proportion of dormant seeds than parents 
grown under historical, cooler conditions (Table  2; Figure  5a). GP, 
on the other hand, was not affected by parental climate (Table  2; 
Figure 5b). This means that the fewer seeds produced on average 
under a future climate will have the same germinability as seeds pro-
duced under historical conditions (total germination: parents from 
a historical climate = 73.3% ± 4.8% SE versus parents from a future 
climate  =  67.4% ± 6.9% SE). Importantly, however, many parents 
grown under future temperatures failed to produce any seed at all 
(Table S4; Notarnicola et al., 2021), which drastically reduces their 
overall mean fitness (Figure 5c).

4  |  DISCUSSION

As the climate changes, the average warmer conditions plants are 
exposed to will likely impact life-history strategies, with repercus-
sions to reproduction and germination. Application of a whole of life 
cycle perspective (possibly over more than one generation) on how 
plant species will respond to changing climatic conditions will enable 
us to better predict the consequences of climate change on biodi-
versity, particularly in vulnerable ecosystems (Satyanti et al., 2021). 
Previously, it was shown that parental individuals of W. ceracea 
grown under warmer (projected future) temperatures produce fewer 
and smaller seeds (Notarnicola et al., 2021). Here, we sought to de-
termine (1) whether these plastic responses to temperature affected 
the seed size versus number trade-off; in addition, we deployed 
those seeds, developed under cooler (historical) and future tem-
peratures, in germination assays to investigate (2) whether seed size 
and number correlate with germination percentage (GP), dormant 
seed fractions, germination velocity and viability of the seeds; and, 
therefore, (3) whether warmer temperatures and plastic responses 
in seed traits affect all these relationships. We found evidence of a 
weak seed size versus number trade-off, but only in seeds developed 
under historical temperatures. Larger seeds germinated faster and 
were more viable, seed number correlated with dormant seed frac-
tions, and warming induced germination of larger seeds. Below we 
discuss the implications of correlations between seed and germina-
tion traits, and of the effect of future warming on adult plants and 
seeds to predict future fitness consequences for alpine plants.

4.1  |  Evidence of a seed size versus number  
trade-off only under historical (cooler) growth 
temperatures in W. ceracea

We found only weak statistical evidence for a seed size versus 
number trade-off in W. ceracea, and only when parental individuals 

TA B L E  1  Regression between seed size and number (seed size vs. 
number trade-off). Main effects model has no interactions; full nested 
model has two-way interactions between seed number and the 
other factors. The intercept corresponds to historical temperature, 
and other parameter values are relative to this. Significant results, 
as for p-value <0.05 from the lmerTest package in r, are presented 
in bold. Number, seed number; p(ML), p-value of the likelihood 
ratio test between the models with and without the random effect; 
par temp(F), future parental temperature; par temp(H), historical 
parental temperature; se, standard error; var, variance explained 
by the random effect. Random effects parameters are the variance 
components associated with that random effect

Seed size

Main effects: Estimate (se) p-value

Intercept 24.051 0.698

Seed number −0.703 0.480 0.144

Parental temperature(future) −3.188 0.969 0.001

Full nested model:

Fixed effects Estimate (se) p-value

Intercept 24.096 0.693

Parental temperature(future) −2.851 0.987 0.004

Number:par temp(H) −1.083 0.533 0.043

Number:par temp(F) 0.755 1.032 0.465

Random effects var p(ML)

Lines 5.1020 0.0161

Residual 45.2510
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were grown under their historical temperature regimes. An often-
overlooked assumption of the Smith and Fretwell  (1974) model is 
that the total investment of parents to the offspring is constant. A 
growing body of literature is showing negative, positive, and neu-
tral relationships between seed size and number in many species 
at the intraspecific level (e.g., Brancalion & Rodrigues,  2014; Guo 
et al., 2010; Lázaro & Larrinaga, 2018), suggesting that this assump-
tion may not always be true in nature. Individuals may differ in the 
amount of energy they invest in their progeny, particularly when 
growing under limiting conditions (Liu et al.,  2013; Paul-Victor & 
Turnbull, 2009; Zhang et al., 2021), where the ability to access and 
allocate resources for reproduction may limit the capacity to reach 
the optimal energetic investment to the offspring. Other factors that 
can affect and mask the seed size versus number trade-off are cor-
relations of seed traits with other life-history traits (e.g., flowering 
time; Gnan et al., 2014), or quantitative trait loci (QTLs) with pleio-
tropic effects on both seed size and number (Ellis et al., 2021).

The severe reductions in both seed number and size under 
warmer growth temperatures resulted in the breakdown of the seed 
size versus number trade-off in W. ceracea. The relationship be-
tween the two traits was if anything, trending positive, under future, 
warmer climates. Investment in either seed size or seed number are 
both adaptive strategies that increase seedling recruitment by provi-
sioning more resources to the offspring or by scattering germination 
in time and space, respectively. Therefore, reductions in both trait 
values may have severe consequences for species persistence. The 
higher production of flowers under a future climate in W. ceracea 
(Notarnicola et al., 2021) suggests an investment of parental indi-
viduals in the seed number life-history strategy. Concurrently, we 
observed a reduction in seed size, confirming the assumption behind 

the seed size versus number trade-off (Smith & Fretwell,  1974). 
However, the limiting conditions of a future climate caused early 
abortion of many flowers and/or disrupted the correct development 
of the seeds, which were largely immature or empty. This resulted 
in reductions in both seed size and number, whose correlation was 
therefore trending positive, although we do not know whether the 
trade-off exists when considering only the viable seeds, or at the 
fruit/capsules and flower levels. There is evidence that both seed 
traits are positively correlated to seed longevity in the seed bank 
(Bekker et al.,  1998; Saatkamp et al.,  2009). Therefore, the relax-
ation of the trade-off will likely reduce the amount and longevity 
of the seed reserve available for future recruitment, affecting local 
species persistence and survival. Future studies should investigate 
the effect of changes in the seed size versus number trade-off to the 
persistence in the seed bank, particularly in alpine plants.

4.2  |  Seed traits correlate with 
germination responses

We found that larger seeds were more likely to be viable and germi-
nated faster than smaller seeds in W. ceracea. The higher viability of 
larger seeds may result from a higher investment of mother plants 
into the embryo, endosperm, and/or seed coat (Counts & Lee, 1991). 
Indeed, seed size is positively correlated to N and P content inside 
the seeds (Lamont & Groom, 2013; Vaughton & Ramsey, 1998). The 
higher viability and vigour of larger seeds may have in turn resulted 
in the higher germination velocity that we observed. Fast germina-
tion and seedling establishment can be vital for persistence in alpine 
environments, where plants need to accumulate resources before 

F I G U R E  2  Relationships between seed 
size and seed number under different 
parental temperatures. Histograms 
above and on the right of the graph 
are the distributions of the raw data 
of the two traits. Grey line and points: 
Historical (cooler) parental temperature; 
green line and points: Future (warmer) 
parental temperature. Points are raw data. 
Regressions are predictions estimated 
from model outputs; grey ribbons 
around regressions are standard errors. 
Regressions were conducted using linear 
mixed effects models with the lmer 
function in the lme4 r package. Predictions 
were obtained with the predict function 
in base R.
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snow deposition (for nondormant seeds) or before the peak of the 
growing season (for dormant seeds).

On the other hand, seed number correlated with the propor-
tion of dormant seeds in parents grown under historical tempera-
tures. The increase in the dormant seed fraction in larger batches 
of seeds may represent a mechanism to reduce the competition 
among siblings during seedling emergence and establishment 
(Campbell et al.,  2017; Grundy et al.,  2003; Lampei et al.,  2017; 
Vitalis et al., 2013) and increase the probability of germination suc-
cess across seasons. This result suggests that there is intraspecific 
variation in germination strategies in W. ceracea. When grown under 
optimal conditions, individuals that produce larger batches of seeds 
may adopt a more conservative strategy with seeds persisting in the 
seed bank. Parents grown under future, warmer temperatures in-
stead increased the dormant fraction (see below) independently from 
how many seeds they produced.

4.3  |  Warming affects parental success and 
germination strategies

4.3.1  |  Plastic changes in seed traits did not affect 
germination

Despite the effect of seed size on germination velocity and seed vi-
ability, there was no evidence that the reduction in either seed size 
or number under future temperatures affected any of the germina-
tion responses investigated here. Viable seeds were equally likely to 
germinate regardless of parental growth conditions. Nevertheless, 
we did find evidence of parental effects in our study; parents grown 
under future temperatures produced a higher fraction of dormant 
seeds. It is possible that overall proportions of dormant seeds found 
in this study may be smaller if dry storage of seeds caused any 
after-ripening (dormancy alleviation under dry conditions; Baskin & 

F I G U R E  3  Relationships between 
seed traits and germination traits under 
different germination temperatures. 
Germination traits: (a, b) germination 
percentage; (c, d) percentage of dormant 
seeds; (e, f) germination velocity (the 
reciprocal of the mean germination time). 
Panels on the left: (a, c, e) regressions 
against seed size; panels on the right:  
(b, d, f) regressions against seed number. 
Blue lines and points: Cool germination 
temperature; red lines and points: Warm 
germination temperature. Points are 
raw data. Regressions are predictions 
estimated from model outputs; grey 
ribbons around regressions are standard 
errors.
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Baskin, 2020). However, given that all seeds were treated equally, 
storage conditions would not have affected differences in dor-
mancy patterns between parents grown under historical or future 
temperatures.

In contrast with our result, prior studies have found higher 
proportions of dormant seeds in parents grown under cool con-
ditions (Bernareggi et al.,  2016; Fenner, 1991; Huang et al.,  2018; 
MacGregor et al., 2015). These studies encompassed many exper-
imental approaches and design, including lab and field studies, and 
thus could be interpreted as suggesting that the reductions in the 
dormant seed fraction under warmer temperatures could be a gen-
eral response. But the opposite was found in W. ceracea, here and 
in Wang et al.  (2021), suggesting either that this may be a specific 

response of this species to warming, that alpine plants differ in the 
effect of growth temperature on dormancy, or that the pattern is not 
as consistent as it seems. More studies are needed to investigate pa-
rental effects on dormant seed fractions in alpine plants to validate 
the generality of our result.

4.3.2  |  Warming during seed germination increased 
success of larger seeds

In our study, warming increased germination velocity in addition to in-
ducing GP. This result agrees with a general effect of warmer tempera-
tures in advancing phenology in plants and animals (Cohen et al., 2018; 

F I G U R E  4  Relationships between 
seed viability and (a) seed size or (b) 
seed number for seeds developed under 
different parental temperatures. Grey 
lines and points: Parents under historical 
(cooler) temperatures; green lines and 
points: Parents under future (warmer) 
temperatures. Points are raw data. 
Regressions are predictions estimated 
from model outputs; grey ribbons around 
regressions are standard errors.

F I G U R E  5  Reaction norms for the 
effect of parental temperatures on 
(a) dormant seeds (%), (b) germination 
percentage (GP; %), and (c) a fitness index 
(calculated as seed number × GP). Points 
in (a) and (b) are raw data. In (c), blue line: 
Cool germination temperature; red line: 
Warm germination temperature. Summary 
values are predictions from the model 
outputs. Bars are standard errors.
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Gugger et al., 2015). Higher temperatures may increase the rate of the 
chemical reactions inside seeds that ultimately lead to germination. 
More studies that directly analyse the effect of temperature on ger-
mination velocity are required to assess the generality of these results.

The results of our study suggest that seeds of a different size 
may have different optima for germination (interaction germina-
tion temperature × seed size). A worldwide survey on angiosperms 
and studies on species that require fire to germinate demonstrate 
that larger seeds need lower temperatures to reach maximum 
germination (Arène et al.,  2017; Hanley et al.,  2003; Liyanage & 
Ooi,  2018). In W. ceracea, we found the opposite trend, where 
warmer temperatures tended increase germination success of 
larger seeds. There is also a chance that this result reflects differ-
ent sensitivity of large versus small seeds to after-ripening during 
dry storage. However, given that after-ripening (if present) tends 
to be slow in species that require cold stratification to break dor-
mancy (Baskin & Baskin, 2020), such as W. ceracea, we suspect this 
effect is not likely to be large.

Warm-cued germination, that is, the induction of germination at 
higher temperatures, is well-documented among many alpine spe-
cies (Billings & Mooney, 1968; Fernández-Pascual et al., 2021). Plants 
adapted to cold environments possess relatively high temperature 
optima for germination (Körner, 2003). This is considered a physiolog-
ical mechanism to reduce germination in autumn or early spring when 
the probability of frost is high (Billings & Mooney, 1968). Then, expo-
sure to winter temperatures (cold stratification) reduces temperature 
requirements for later germination (Shimono & Kudo, 2005). Such a 
response suggests that the temperature window for germination is 
narrow and there is a fraction of seed that is in effect conditionally 
dormant when germination temperatures are low. Future climate 
projections predict that the growing season in alpine ecosystems will 
lengthen, and autumns will be warmer (Harris et al., 2016). Therefore, 
autumn germination (soon after dispersal) is more likely to occur in  
W. ceracea (and possibly many other alpine species), which then 
exposes seedlings to warmer temperatures or weather extremes that 
might reduce seedling survival. In this context, the seedlings emerging 
from larger seeds may have greater survival probability until winter. 
Indeed, seed size is usually positively correlated to seedling size, sur-
vival, and competitiveness under limiting conditions, such as nutri-
ent shortage, drought, and shade (Moles & Leishman, 2008; Pivatto 
et al., 2014; Tungate et al., 2006). Thus, if W. ceracea individuals can 
produce seeds of different sizes within the same reproductive event, 
then the differential responses of germination to temperature medi-
ated by seed size may represent another case of bet-hedging strategy 
in this species to overcome environmental or climatic uncertainty at 
the end of the growing season (Jiang et al., 2019; Scholl et al., 2020).

4.4  |  Fitness consequences of a warming climate 
on alpine plants

Alpine environments are considered particularly threatened by cli-
mate change, but research increasingly suggests alpine species may 

be resilient to at least occasional warmer seasons. Temperatures in 
alpine environments are usually below optimum, therefore periodic 
warmer seasons can stimulate growth and in some species flower 
production (Frei, Ghazoul, Matter, et al.,  2014; Frei, Ghazoul, & 
Pluess, 2014; Notarnicola et al., 2021). Alpine plants also possess re-
sponses to cope with high temperatures. Examples are physiological 
acclimation to tolerate heat (although studies in alpine environments 
are lacking; Buchner et al.,  2017; Geange et al.,  2021; Notarnicola 
et al., 2021), early flowering onset (shift in phenology; Frei, Ghazoul, 
Matter, et al., 2014; Frei, Ghazoul, & Pluess, 2014; Gugger et al., 2015; 
Notarnicola et al., 2021), and germination strategies, where seed dor-
mancy scatters recruitment in different seasons (Hoyle et al.,  2015; 
Satyanti et al.,  2019). However, high temperatures also have det-
rimental effects on plants. Here, we calculated a fitness index for  
W. ceracea (Fitness index = seed number × GP) to summarise the effects 
of temperature applied on the whole life cycle, from parents to seeds. 
We found that individuals grown under future, warmer conditions un-
derwent a serious reduction in their overall fitness. The fewer and less 
viable seeds developed under future temperatures greatly reduced 
seedling recruitment by more than fourfold. Therefore, a consistently 
warmer environment due to a sustained rise in temperatures in the long 
term may benefit those subalpine species that are both better adapted 
to and better competitors under warmer temperatures, to the poten-
tial detriment of alpine species (Seastedt & Oldfather,  2021). Such 
shifts in vegetation composition have already been documented in the 
European Alps (Pauli et al., 2012; Steinbauer et al., 2018). While we fo-
cused this study on the effect of temperature, we do note that the con-
current reductions in precipitation projected for future climates (Hock 
et al., 2019), will likely play an important role and intensify effects on 
fitness in interaction with temperature for alpine plants. Water stress 
due to decreased transpiration with lower precipitation in the vegeta-
tive phase could exacerbate impact of warming from seed and seedling 
phase through to maturity. Future studies are needed to address how 
drought and temperature interactions will affect seed traits and germi-
nation strategies and how these scale to lifetime performance.

In addition, while the effect of warmer temperatures in in-
creasing germination is often considered positive by the scientific 
community, it will impact the capacity of alpine plants to scatter 
germination across seasons and environmental conditions. Plants 
will need to adapt their germination strategies (as we found in  
W. ceracea that increased the dormant seed fraction). Although 
there is evidence of higher winter-survival in autumn-emerged seed-
lings in warmer rather than cooler sites (Mondoni et al., 2015), more 
studies are needed to investigate the consequences of potentially 
premature germination on the fate of the early emerging seedlings 
and on reductions of the soil seed bank.

Despite being part of the equation for adaptive change, intra-
specific trait variation is seldom discussed and investigated in plant 
ecophysiology. Here, we found significant intraspecific variation in 
all the germination traits considered in this study. Particularly, sig-
nificant intraspecific variation in GP means that lines differ in their 
overall fitness. Therefore, selection may act upon this variation in 
germination traits, if at least part of it is heritable, possibly causing 
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adaptive switches in the optima for these traits and ultimately lead-
ing to changes in seed traits and germination strategies.

5  |  CONCLUSIONS

Our study demonstrates the importance of seed traits in germination 
responses and highlights the sensitivity of germination to temperature. 
We showed here that the seed size versus number trade-off is depend-
ent on growing conditions, where future, warmer growth temperatures 
limit the optimal investment in reproduction. Indeed, despite the higher 
investment in flower production, smaller and fewer seeds were pro-
duced under these conditions, which broke down the trade-off. Larger 
seeds were both more viable and germinated faster. Seed number also 
correlated with proportions of dormant seeds, suggesting a mechanism 
to reduce competition among siblings in large batches of seeds. Despite 
these relationships, the reductions of both seed size and number in 
future climates did not affect germination responses nor percentage. 
Instead, warming during germination increased germination percentage 
and velocity. While we observed a drastic reduction in fitness under 
warming, there is concurrently substantial intraspecific variation in 
many traits that may hold promise for future adaptive change. For the 
first time in alpine plants, we show here that larger seeds required higher 
temperatures to trigger germination than smaller seeds. If this result is 
representative of other alpine species, then warmer climates will trigger 
germination in autumn and further studies should investigate whether 
this will have positive or negative effects on population dynamics.
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