1,182 research outputs found

    Oidium neolycopersici: Intra-specific variability inferred from AFLP analysis and relationship with closely related powdery mildew fungi infecting various plant species

    Get PDF
    Previous works indicated a considerable variation in the pathogenicity, virulence, and host range of Oidium neolycopersici isolates causing tomato powdery mildew epidemics in many parts of the world. In this study, rDNA internal transcribed spacer (ITS) sequences, and amplified fragment length polymorphism (AFLP) patterns were analyzed in 17 O. neolycopersici samples collected in Europe, North America, and Japan, including those which overcame some of the tomato major resistance genes. The ITS sequences were identical in all 10 samples tested and were also identical to ITS sequences of eight previously studied O. neolycopersici specimens. The AFLP analysis revealed a high genetic diversity in O. neolycopersici and indicated that all 17 samples represented different genotypes. This might suggest the existence of either a yet unrevealed sexual reproduction or other genetic mechanisms that maintain a high genetic variability in O. neolycopersici. No clear correlation was found between the virulence and the AFLP patterns of the O. neolycopersici isolates studied. The relationship between O. neolycopersici and powdery mildew anamorphs infecting Aquilegia vulgaris, Chelidonium majus, Passiflora caerulea, and Sedum alboroseum was also investigated. These anamorphs are morphologically indistinguishable from and phylogenetically closely related to O. neolycopersici. The cross-inoculation tests and the analyses of ITS sequences and AFLP patterns jointly indicated that the powdery mildew anamorphs collected from the above mentioned plant species all represent distinct, but closely related species according to the phylogenetic species recognition. All these species were pathogenic only to their original host plant species, except O. neolycopersici which infected S. alboroseum, tobacco, petunia, and Arabidopsis thaliana, in addition to tomato, in cross-inoculation tests. This is the first genome-wide study that investigates the relationships among powdery mildews that are closely related based on ITS sequences and morphology. The results indicate that morphologically indistinguishable powdery mildews that differed in only one to five single nucleotide positions in their ITS region are to be considered as different taxa with distinct host ranges

    Monitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas

    Full text link
    Concern that hydraulic fracturing and natural gas production contaminates groundwater requires techniques to attribute and estimate methane flux. Although dissolved alkane and noble gas chemistry may distinguish thermogenic and microbial methane, low solubility and concentration of methane in atmosphereâ equilibrated groundwater precludes the use of methane to differentiate locations affected by high and low flux of stray methane. We present a method to estimate stray gas infiltration into groundwater using dissolved nitrogen. Due to the high concentration of nitrogen in atmosphericâ recharged groundwater and low concentration in natural gas, dissolved nitrogen in groundwater is much less sensitive to change than dissolved methane and may differentiate groundwater affected high and low flux of stray natural gas. We report alkane and nitrogen chemistry from shallow groundwater wells and eight natural gas production wells in the Barnett Shale footprint to attribute methane and estimate mixing ratios of thermogenic natural gas to groundwater. Most groundwater wells have trace to nondetect concentrations of methane. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas from the Barnett Shale and/or shallower Strawn Group suggesting that localized migration of natural gas occurred. Twoâ component mixing models constructed with dissolved nitrogen concentrations and isotope values identify three wells that were likely affected by a large influx of natural gas with gas:water mixing ratios approaching 1:5. Most groundwater wells, even those with greater than 10â mg/L methane, have dissolved nitrogen chemistry typical of atmosphereâ equilibrated groundwater suggesting natural gas:water mixing ratios smaller than 1:20.Plain Language SummaryHydraulic fracturing, horizontal drilling, and associated natural gas production have dramatically changed the energy landscape across America over the past 10 years. Along with this renaissance in the energy sector has come public concern that hydraulic fracturing may contaminate groundwater. In this study we measure the chemistry of dissolved gas from shallow groundwater wells located above the Barnett Shale natural gas play, a tight gas reservoir located west of the Dallasâ Fort Worth Metroplex. We compare groundwater chemistry results to natural gas chemistry results from nearby production wells. Most groundwater wells have trace to nondetectible concentrations of methane, consistent with no measurable infiltration of natural gas into shallow groundwater. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas. Using dissolved nitrogen and alkane concentrations and their stable isotope ratios in combination with chemical mixing models, we conclude that natural gas transported from the shallower Strawn Group affected these groundwater wells rather than natural gas from the deeper Barnett Shale, which is the target of hydraulic fracturing in this area. These results suggest that hydraulic fracturing has not affected shallow groundwater drinking sources in this area.Key PointsDissolved nitrogen in groundwater provides a means to differentiate highâ and lowâ flux infiltration of stray gasNitrogen concentrations and isotope values may attribute natural gas sourcesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/1/wrcr23523.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/2/wrcr23523_am.pd

    Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Get PDF
    Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG), depending on the tissue and experimental treatment, the gene has been us Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT) PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and N Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.
    • …
    corecore