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Abstract  
 

This study provides a methodology to optimize the match between the characteristics of a 

geologic storage site and the monitoring technologies selected for it. Components of this study 

include  

(1) Modeling the sensitivity of selected representative monitoring strategies to the expected 

variability of sites; 

(2) Testing the evaluation against the growing array of field measurements, gathered from field 

test sites; 

(3) Building consensus that the proposed improvements in mechanisms for matching 

monitoring methods to sites are properly applied and adequate; 

(4) Compiling a workbook of test cases for training practitioners in applying the strategies to 

an array of sites. 

Three types of site-specific parameters must be considered to develop a monitoring program: 

project/site-specific goals, site-specific risks of not accomplishing those goals, and site-specific 

tool sensitivity. Each of these elements is explored. 

Goals vary among projects because of different regulatory drivers, different industry drivers, and 

different issues of public concern. As an example, we highlight the difference between a 

research- or demonstration-oriented project, as most current storage projects would be classified, 

and a fully commercial project in a mature storage industry, which is the ultimate goal for the 

carbon capture and storage. An optimized monitoring program for a research program will be 

quite different from that for a commercial program. Goals must be stated quantitatively so that a 

plan can be developed to document that the goals are reached. The term “material impact” is 

proposed for scenarios where project goals might not be achieved. 

Site-specific risks of not meeting the project goals are widely recognized, because of geologic 

differences between sites. In this study, we propose a workflow to select elements of the project 

where confidence from characterization is insufficient to provide adequate assurance that the 

project will reach its goals. This process is described as an Assessment of Low Probability 

Material Impacts (ALPMI) and is a simple test design method. For each goal, thresholds that 

would constitute material impacts are set. Monitoring is then designed to detect the signal above 

the material impact threshold; only by this method can the expected finding of project success be 

documented. 

Site-specific sensitivity of methods is broken down into noise and signal. Noise is irreducible 

fluctuations that obscure the signal, and it can be highly variable among sites. The strength of the 

signal also varies among sites. Case studies to illustrate site-specific signal strength for specific 

elements of 4-D seismic, pressure, thermal methods, and geochemical techniques were 

completed.  
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I. Motivation of this study and scope of final report 

This study was conducted under funding from the U.S. Environmental Protection Agency (EPA) 

and from the CO2 Capture Project Joint Industry Project (http://www.co2captureproject.org/). 

The study was proposed and initiated prior to EPA’s release of two major rules related to carbon 

dioxide (CO2) geologic storage: the Mandatory Reporting of Greenhouse Gases added to the 

Clean Air Act (U.S. CFR 2010a) and the Class VI rule added to the Underground Injection 

Control Program (U.S. CFR, 2010b). The perspectives provided by these rules were incorporated 

into the study; however, the scope remains high level, in terms of accepting and generating 

information relevant to geologic storage projects in many contexts, including those seeking to 

meet the site-specific requirements of the EPA’s greenhouse gas and Class VI rules but also to 

conduct CO2 accounting for federal or state credit (for example, U.S. Code, 2011; Texas House 

Bill 469, 2009), or to follow the guidelines of an exchange (for example, prototype of 

McCormick, 2012), or to contribute to improving the quality of storage monitoring in an 

international arena (for example, Official Journal of the European Union, 2009).  

Essentially all the rules, guidance documents, and frameworks promulgated or being developed 

for the regulation and accounting of geologic storage of CO2 in the United States or 

internationally require a monitoring program (Table 1). In many cases, a recommendation or 

requirement is given that the monitoring program be “site-specific.” Few details are provided, 

however, on how to comply with this expectation.  

The overarching goals of monitoring are relatively consistent in reviewed documents. 

Overarching goals are to provide assurances to regulators and stakeholders that the retention of 

CO2 implicit in the term “storage” will occur. In particular, goals must be designed to ensure (1) 

that the site characterization based on which permits were granted is correct and (2) that injection 

operations are being conducted as planned to assure retention. Site characterization shows that 

the injection zone has sufficient capacity to store the CO2, and injectivity shows that the zone can 

accept the CO2 at the planned rate. Characterization also shows that the confining system 

overlying the injection zone has characteristics that will sufficiently retard vertical migration of 

CO2 and that the retention is effective to benefit the atmosphere and prevent damage. Operations 

include remediation of existing man-made structures such as wells, installation of new wells, 

injection operations, and any other relevant operations such as production. 

Frameworks for monitoring are in agreement that the monitoring program should be adapted to 

the specific site at which it is deployed. The methods by which the monitoring program should 

be matched to the site, however, are not provided in detail. This site-specific adaptation is very 

important in correctly meeting regulatory expectations. For example, a technique that works well 

at one site to detect leakage could be inadequate at another site. Application of an inadequate 

technique has two serious implications: (1) the operator increases costs without achieving desired 

benefit, and more importantly from a regulatory perspective, (2) the monitoring goal in terms of 

protection is not adequate to achieve this goal, and damage to protected resources or loss of CO2 

to the atmosphere could result without reporting or mitigation. 

Despite the importance of site-specific adaptation to project success, site developers and 

regulators are, for the most part, “on their own” to make the selection of tools needed. In the end, 

a collaborative negotiation will always be needed. The goal of this study is to provide some case 
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studies based on experience and models that can provide a framework into which site developers 

and regulators can place their decision-making process. 

 

 

Table 1. Seventeen representative best-practice manuals, suggested protocols, regulatory 

guidance, and regulations with relevance to monitoring design and site-specific adaptation. 

Source Scope Citation 

IEAGHG study Inventory Benson and others, 2004 

US NETL/DOE Suggested best practices, monitoring U.S. Department of Energy, 

National Energy Technology 

Laboratory, 2009 

US NETL/DOE Suggested best practices, risk 

assessment 

U.S. Department of Energy, 

National Energy Technology 

Laboratory, 2009 

US EPA Rule – UIC program U.S. CFR, 2010b 

US EPA Rule – CAA program  U.S. CFR, 2010a 

US Internal Revenue Service Tax credit for CCS U.S. Code, 2011 

US EPA Class VI Well Testing and 

Monitoring Guidance 

U.S. Environmental Protection 

Agency, 2013 

International Energy Agency Model regulatory guidance International Energy Agency, 2010 

US EPA Guidance Subparts RR and UU 

greenhouse gas reporting program 

U.S. Environmental Protection 

Agency, Office of Air and 

Radiation, 2010 

Pew Center / C2ES  Suggested protocol: Accounting 

framework 

McCormick, 2012  

Interstate Oil and Gas Compact 

Commission 

 Suggested protocol Interstate Oil and Gas Compact 

Commission, 2007 

Texas Railroad Commission Rule for credit Texas Administrative Code, 2010 

Det Norske Veritas  CO2QUALSTORE guidelines  Det Norske Veritas, 2009 

European Union Directive of the European 

Parliament 

Journal of the European Union, 

2009 

Shell  Commercial MMV plan for Quest 

Project 

Shell, 2010 

Canadian Standards Association Recommended standards CSA Group, 2012 

World Resources Institute  Recommended standards World Resources Institute, 2008 
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A review of previous injection projects (Figure 1) shows an advancement in technology, leading 

from skills in handling and permitting injection as part of other subsurface activities, to storage 

in isolation from atmosphere and ecosystem as a goal, and to the introduction of an expectation 

of monitoring for storage assurance. The present study is part of a progression moving toward 

fully commercial projects. 

 

 
Figure 1. Representative injection projects showing project evolution. Storage in isolation from 

atmosphere and ecosystem and introduction of an expectation of monitoring for storage 

assurance are recent developments now maturing. 

Figure 2 illustrates part of the motivation of the present study by showing that the amount of 

monitoring for geologic storage has been highly variable. Early and feasibility tests check 

injectivity and injection equipment using only a few monitoring techniques. Monitoring tests and 

model validations are designed to test the maximum number of technologies and to probe 

uncertainties. Research and development approaches require duplication of results and 

experimental tests that may not succeed in the early stage, or may be found to be unsuitable for 

the case. More commercial projects show maturation, in that technologies have been reduced to 

those that have been shown to be effective, to be viable in commercial settings, and to fit the 

focused purposes of the commercial projects. This inventory is somewhat subjective in that the 

count of number of technologies is sensitive to “lumping and splitting.” For example, if a 

number of variants in soil gas methods were used, how many should be counted? The inventory 

was arbitrarily baselined against the approaches used at the SECARB Early test and Frio test 

because the authors are familiar with those results. In addition, commercial project reporting 

probably has some undercounting biases, in that the projects are newer and coordinators may 

have less motivation to publish results. In a number of cases we obtained confidential access to 

plans to improve data.  
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Figure 2. Count of shallow and deep focused monitoring technologies for selected projects of 

different maturities horizontal axis is project maturity. 

The results of the research conducted for this study are organized into the following sections: 

(II) Select strategies for application of monitoring to specific sites  

(III) Field test sites 

(IV) Develop consensus  

(V) Workbook preparation 

This final report provides an overview of the steps by which the project objectives were 

completed, which includes a number of publications and reports, as well as workshops and 

stakeholder engagement activities. Results that are published or in publication are cited and 

reviewed briefly but not quoted in entirety. 

II. Select strategies for application of monitoring to specific 
sites  

During this study we evaluated many technologies and approaches used for monitoring. Our 

approach was to invest heavily in the growing body of expertise through dialog with global 

experts, formal and informal review of storage projects, and in-depth field experience designing 

and conducting field projects at the Gulf Coast Carbon Center. These activities are discussed in 

detail in section IV. It became apparent that matching the monitoring to the site required 

consideration of a number of issues preceding monitoring design. Issues dealt with and discussed 
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in detail in this section are (1) quantitative project goal setting (identification of material 

impacts); (2) characterization and uncertainties; and (3) assessment of low probability material 

impacts (ALPMI). Following this workflow allows a design for monitoring to be fit to purpose in 

that the monitoring can test for presence/absence of ALPMI. Two elements specific to sites are 

to be considered for all tool types: noise and strength of signal, both of which are further 

discussed in this section. 

To meet the project goal of quantitative evaluation of potential monitoring strategies we 

reviewed inventories and experience with a large number of tools. For detailed study, we 

selected subsets of tools on which to conduct a detailed assessment of site-specific limitations.  

We note that the performance of tools involves a complex interaction of many components. The 

design of the tool itself in terms of sensitivity to signal, the operation of the tool in terms of 

technical aspects such as calibration and optimized operation, the frequency, spacing, and 

duration of deployment of the tool, the precision and frequency of data recording, the analytical 

methods used to process the data, and the statistical approaches to filter noise, as wells as the 

approach to interpretation, can all have strong impacts on the suitability of the tool for the 

monitoring purposes. Project developers and regulators recognize the need to select a qualified 

vendor to operate a technology with best standards. For this reason, EPA requires development 

of a quality assurance project plan (QAPP) that provides assurance that data collected by 

monitoring projects are of known and suitable quality and quantity (U.S. Environmental 

Protection Agency, 2001). Experts in monitoring design that we interviewed concur that because 

of the complexity of interactions among these variables, the only way that an approach can be 

optimized for a specific site is to invest in a proper site-specific design program for the selected 

tools. This “leave it to the experts” approach, however, does not provide a process for 

determining if a monitoring program is adequate to achieve the project’s goals or to evaluate the 

value of investment in one type of tool over another.  

Few published works related to geologic storage provide simple and accessible assessments of 

the limitations of tools. We note that projects in which a limitation of a tool was encountered 

tend not to fully assess this limitation. Data on limitations are most accessible through informal 

conversations and at technical working group reviews. It is common for limitations to be 

expressed in publication in terms of future work or lessons learned, and full quantitative details 

may not be available. To fill this gap, we conducted an analysis focused on the interaction of 

selected site-specific parameters on the use of four tools: time-lapse 3-D seismic monitoring, 

pressure monitoring, temperature monitoring, and geochemical monitoring for leakage detection. 

Each of the tools was assessed in one or more technical papers, and a synopsis was used in 

compilation of a workbook (Hovorka and others, 2014a).  

II-1. Limits of this study 

The field of monitoring geologic storage sites is large and growing rapidly. Several previous 

reports have undertaken comprehensive inventories of types of tools (IPPC, 2005; British 

Geological Survey, 2006; U.S. Department of Energy, National Energy Technology Laboratory, 

2009). Review of these inventories shows that a comprehensive overview of the site-specific 

limitations on the large array of tools is a very large undertaking. Further, technical trends 

observed show that rapid technology advancement is occurring as a result of global efforts on 

geologic storage testing and demonstration; soon after a tool limitation is identified, techniques 

to reduce the limitation follow. Many of the tools considered constitute large subdisciplines of 
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geoscience with their own focused expertise, for example, seismic 3-D collection and 

interpretation of groundwater geochemistry; it is not pragmatic to collect all of this expertise into 

a geologic storage-specific reference work. 

The viable approach to completing an optimized design is for the project developers to 

commission the needed study and design by a team of experts, who will prepare documentation 

of the plan for regulatory review, an approach demonstrated by commercial projects (for 

example, Shell for the QUEST project, 2010). However, to identify the correct types of 

expertise, substantive cross-discipline expertise is needed. The final product of this study is a 

workbook that project developers and regulators can use to build expertise to conduct the needed 

evaluation. 

This study is focused on illustrative cases selected because (1) they are widely considered as 

basic approaches for monitoring and (2) they are illustrative of some of the different disciplines 

and technologies in the monitoring portfolio. We emphasize that the goal of this project is far 

short of providing all the information needed to develop a site-specific monitoring plan; 

however, we intend that it will be of value to project developers and regulators who are working 

with a team of technology experts as they evaluate and select monitoring options suitable to the 

project and site. 

II-2. Activities precedent to monitoring design 

During our work with experts, we learned how much impact the context in which the monitoring 

is conducted has on the development of monitoring. Many intense debates arise because of 

unstated differences in assumptions of the project goals. Most projects have broad programmatic 

objectives; however, different backgrounds, experiences, and contexts cause different 

stakeholders to interpret these objectives differently. One finding from this project is the need for 

explicit and quantitative metrics for project success with a strong and clearly expressed linkage 

to a site-specific monitoring program. A second issue observed is a mismatch of perception of 

uncertainty and risk between the site proponents and those who are reviewing and providing 

assurance that the site will operate as planned. As a resolution to these needs, we propose a 

process of assessment of low probability material impacts (ALPMI) described in Hovorka and 

others (2014a) and reviewed in this section. These precedent activities are essential to 

development of a successful site-specific monitoring plan.  

II-2-1 Quantitative project goal setting 

A monitoring program that is not based on a series of well-defined project goals is a high risk to 

the project. A monitoring design that is not carefully fit to purpose is at risk of (1) detecting 

changes that are unimportant to the project intent but confusing to the stakeholders or (2) failing 

to detect events that are indicative of current or future problems leading to failure to achieve the 

project objectives.  

As an example, consider a high-level project goal of causing no unacceptable impact. Injection is 

likely to cause some level of microseismicity (IEAGHG, 2013), which in case (1) might be 

perceived by stakeholders as something not tolerable, and might cause the project to be shut 

down. In case (2), a trend of increasing seismicity in part of the site might be ignored until a felt 

event was triggered, which might cause the project to be shut down. The process of quantitative 

goal setting would define a distribution of acceptable microseismicity in terms of magnitude and 

probability and collect appropriate data to confirm that the range of events detected matches the 
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projected performance. Stakeholders would be reassured that the project is well managed. If an 

unexpected trend is detected prior to any events that harm public confidence, the operation can 

modify the injection to decrease risk. 

Because it is difficult for project developers to discuss “failure” in a situation where most of the 

effort is building confidence of the public, investors, and regulators, we use a more neutral term: 

“material impact.” Material impact is an event, or preferably a trend of measurements, that 

would cause the project not to meet its quantitative goals. The process of identifying material 

impact is the same as is used in many industries under the classification of risk assessment. For 

an example of an industrial approach applied to a geologic storage project, see Shell’s (2010) 

plan for measurement, monitoring, and verification at the QUEST project.  

For design of a monitoring strategy, a complete risk assessment in the sense of U.S. 

Environmental Protection Agency, Office of Science Policy (2000), or U.S. Department of Energy, 

National Energy Technology Laboratory (2011), or Det Norske Veritas (2013) is not needed. 

Quantitative data on the magnitude of loss or the probability of loss are difficult to develop for 

low-probability events and for sites where historical data on frequency are lacking. Such data are 

not needed for the design illustrated here; however, if such quantification is available, it can be 

used to develop a formal value-of-information approach to optimize the monitoring costs. In 

addition, because of the nature of CO2, a detailed study of risk to human health or to the 

ecosystem is not needed. An example of a material impact might be that the reservoir cannot 

accept the planned volume of CO2 at the planned rate because bottom-hole pressure in the 

injection zone was observed to be increasing more quickly than modeled. Proper measurement 

can identify such a trend and modify the plan needed to avoid the impact of injecting less CO2 

than originally planned or exceeding the acceptable bottom-hole pressure. An example of such a 

successful detection of unexpected limits in capacity and mitigation is provided by Statoil’s 

injection at Snøhvit field in the North Sea (Hansen and others, 2013). 

 
Figure 3. Comparing the goals and motivations of research and commercial monitoring. 
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From our experience, the transition from research-oriented projects to commercial projects is an 

important change that needs to be understood in the context of selection of monitoring 

technologies (Hovorka, 2012). Figure 3 diagrams some typical differences in motivation we have 

observed between demonstration projects having a research focus and those having a commercial 

focus. It is important that monitoring program designers not confuse an excellent monitoring 

plan having a research goal with an equally excellent but much more focused monitoring plan 

having a commercial goal. 

II-2-2 Characterization and uncertainties 

Geologic characterization provides the data to the predictive models on which the injection 

operation is designed and supports the prediction that the project goals can be met. Good 

characterization is therefore essential (for example US DOE, 2010). A project will not be likely 

to be permitted to inject until the key uncertainties have been reduced such that successful 

performance is expected. Therefore, monitoring protocols that require that “possible leakage 

paths be monitored” are likely to receive the response from the project proponents that at an 

advanced stage of project development, all possible leakage paths have been evaluated and the 

risk has been essentially eliminated. For example, wells have been assessed and remediated as 

needed and no conductive fracture systems were found. This perspective can lead to a superficial 

evaluation and deployment of minimal monitoring to “check the boxes” in a plan. However, as 

discussed previously, a superficial approach is a risk to the project in terms of the possibility of 

collecting unexplained signal and lowering confidence or spending money and effort but missing 

important signal. 

Some uncertainties remain in all model predictions, even those based on very good 

characterization (Cooper, 2009, p. 11), especially about events that are of larger magnitude or 

longer duration than were measured during characterization. Such unprecedented perturbations 

can be referred to as “in the white space” (Figure 4). Prediction of the reservoir response to 

sustained large-volume injection of an allochthonous fluid as occurs during CO2 storage falls in 

this category. To complete a quantitative characterization of the system response, it is usually 

necessary to energize the reservoir system by injecting or withdrawing fluids to obtain reliable 

data on the hydrological properties of the reservoir (Cooper and others, 2009, p. 53). The best 

practice from CO2 EOR projects is to conduct a CO2 injection pilot prior to committing to a full-

scale injection (Teletzke and others, 2010). Other elements, such as the performance of the 

confining system including the adequacy of well penetrations in providing isolation, the nature of 

reservoir boundary conditions, and the geomechanical response of the reservoir to pressure 

increases, may also be critical needs prior to completing the risk assessment and designing a 

monitoring program (for example Birkholzer and others, 2013) . For large volumes and long 

durations, however, data from the full-scale injection may be the only way to reduce uncertainly 

far enough to meet project goals. In this case, monitoring is the approach needed. 

A formal, iterative process is recommended to evaluate the uncertainty in characterization data. 

Early in project development, modeling is conducted to define the most likely outcome of 

injection, and perhaps a probability envelope around the most likely outcome as shown in Figure 

5. However, as part of the monitoring design in a mature part of the project development, we 

recommend focusing instead on modeling conditions that would lead to material impact with 

respect to the project goals, the outer box in Figure 5. The boundary between an acceptable 

outcome and an unacceptable outcome can be considered for many reservoir responses. It might 
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be lateral or vertical CO2 migration or pressure increase in a larger area than permitted or leased; 

it might be pressure elevation above a geomechanically defined threshold, or microseismic 

response over a threshold defined as not acceptable. 

 
Figure 4. Prediction of system response is well defined where it is constrained by data (solid 

dots); however, modeling high magnitudes and longer time frames is more conjectural (dotted 

lines). Monitoring is one method of filling in the “white space” with data.  

 
Figure 5. The predicted range of reservoir responses and the prediction uncertainty are the focus 

of early stages of developing a project. At the stage of developing a monitoring plant, the limits 

of the acceptable range of responses become important. In addition, for this study we consider 

the observation uncertainty, and whether the selected monitoring technology is sufficient to 

determine if the reservoir response is inside of the acceptable range.  
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Not all characterization data are equally important to the goals set by the project. In an 

assessment workflow, we suggest that early and approximate characterization data be taken 

through a preliminary modeling-driven risk assessment, to determine the precision with which 

reservoir properties need to be characterized to meet project goals. For example, the rate at 

which rock-water-CO2 reaction stabilizes the plume may slow, and therefore not be defined as 

important criteria defining project success. We note that surveying the low-probability but 

possible situations, which may lie at the ends of distributions of characterization parameters, may 

be important in elimination of potential material impacts. For example, a few well-connected 

preferential flow “thief” zones could cause the plume to increase in size beyond what is 

acceptable. Assessment of scenarios for such zones requires consideration of the end of the 

permeability distribution, not of the average. Risk assessment and modeling can then be used 

interactively with characterization to optimize monitoring design, as described in the next 

section. 

The value of collection of data intermediate between characterization of ambient conditions and 

monitoring a large-scale injection for a long period should be further considered to fill in the 

“white space” without requiring large injection or long time frames. Such data include carefully 

designed laboratory-scale and small- to intermediate-scale field test programs. For example, the 

interaction of the rock system with CO2 during stabilization can be tested at a small scale and for 

a short duration to provide data relevant to postclosure conditions to improve confidence in 

prediction (Daley and Hovorka, 2010).  

II-2-3 Assessment of low probability material impacts (ALPMI)  

The next step of an ALPMI process, following quantitative goal setting and characterization, is 

to identify the monitoring approach that can determine if the material impact is or is not 

occurring. Documenting the expected outcome, confirmation of a negative finding that the 

material impact is not occurring, requires thoughtful design but is of high value to the project.  

The assessment proceeds with creation of the material impact in a model. An example of a series 

of conceptual models of nonconformant migration for a highly generalized site is shown in 

Figure 6. Intersection of these ideas with a site characterization results in a series of scenarios to 

be tested to see if they are possible and, if so, if they lead to material impact. Material impact can 

be examined through very simple conceptual models, or more quantitatively as analytical or 

geocellular fluid flow models. Model uncertainty as two-phase fluids and buoyancy interact with 

porous media and reservoir structure has been explored at the basin-scale by Gibson-Poole and 

others (2008) in Gippsland Basin, southeast Australia, or through forward modeling and history 

matching example of Sleipner free-phase CO2 (Cavanaugh 2013). In our experience, for some 

cases, attempting to model a material impact will show that the data already available eliminate 

the possibility that the material impact can occur. Other cases require additional data to confirm 

or refute the scenarios that lead to potential material impact. Acquisition of these data is then 

identified as the monitoring need. The workbook prepared for this study presents some examples 

of the ALPMI process (Hovorka and others, 2014a). In our experience, the monitoring needs 

tend to converge toward a relatively small number of types of measurements, as many material 

impacts are observed to have overlapping precursor signals. 
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Figure 6. Simple conceptual models exploring the possible uncertainties in free-phase CO2 

distribution in map view and cross section. (a) the modeled more likely plume geometry at the 

end of injection, (b) a larger but less highly saturated plume form high residual water saturation 

(Sw), (c) high heterogeneity, (d) high anisotropy, (e) the predicted distribution of free-phase CO2 

at stabilization, with local dip to the right, (f) the free-phase CO2 at stabilization of the residual 

CO2 saturation (Sr) is lower than expected, (g) flaws in confinement that allow the CO2 to 

migrate to a shallower zone, the above zone monitoring interval (AZMI), and (h) the CO2 

migrated to the surface. 

Modeling ALPMI is essential to define the magnitude, timing, and evolution of the signal. 

Quantification of the signal is a critical step in designing a program to detect the signal, or 

importantly, to demonstrate that impact is not occurring. For example, if a time-lapse 3-D survey 

is the mechanism under consideration for detection of CO2 that has migrated out of the planned 

project area, it is important to predict the plume thickness and parameters of the zone where it 

might migrate, such that a program for detection can be designed. If a program of surveillance of 

underground sources of drinking water (USDW) is proposed, it is important to conceptualize the 

various rates and mechanisms by which CO2 could be introduced into different zones to design 

detection or to confirm that no impact to USDW has occurred.  

It is important to note a major systematic difference in ALPMI arises when considering past site 

histories. As a project in part derived from this study and linked to a number of field tests we 



 

12 

assessed the role of site history in geologic storage assurance (Wolaver and others, 2013). Figure 

7 reviews some of the significant differences between a site that has a long geologic history as a 

hydrocarbon trap and operational of production, termed a “brownfield,” and a site that is 

developed for storage in an unused saline aquifer, termed a “greenfield.” A site into which CO2 

will be injected for CO2 enhanced oil recovery (EOR) has a well-known volume because of 

production history, well-known and actively managed areas of plume and pressure response, and 

a demonstrated confining system. For a similar site with no trapping or production history the 

monitoring plan may need to target these uncertainties. However, as discussed by Wolaver and 

others (2013), the EOR site may have other needs in terms of a fit-to-purpose monitoring plan, 

such as demonstration that well construction is adequate to provide the desired assurance of 

retention. This comparison is important in developing site-specific approaches to providing the 

same level of storage assurance for CO2 injection at sites having different histories, for example, 

in design monitoring to meet the greenhouse gas reporting rules under Clean Air Act Subpart RR 

(U.S. CFR 2010a). 

 
Figure 7. The history of site has a major impact on ALPMI. 

The next two sections discuss additional site-specific elements of noise and signal. Following 

this workflow allows a design for monitoring to be fit to purpose in that the monitoring program 

can test for the presence/absence of ALPMI.  

II-3. Noise: a critical site-specific parameter for monitoring 

The limit on detectability created by irreducible variability in the parameter to be assessed is 

classified as noise and can vary strongly among sites. Each monitoring technology has a number 

of detection limits that are assessed during QAPP or other well-established methods. However, 

the ambient variability of the site with respect to signal is highlighted here. Noise is particularly 

important in geologic storage monitoring because of (1) heavy reliance on time-lapse detection 
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of change and (2) sites that are vertically and areally extensive, capturing diverse parts of the 

system.  

An important example of noise for geologic storage is ambient variability in CO2 at the surface, 

in groundwater, and to a lesser extent, at depth. CO2 is generated by biologic processes and 

reduced by uptake during photosynthesis, by dilution by addition of other fluids, and by reactions 

that consume CO2. The amount of CO2 changes with temperature, light, and moisture in diurnal 

and seasonal trends. It may also change over time, for example, in response to climate or land 

use change. In some cases, much of this variability can be reduced numerically or by picking 

more stable sampling points. However, in so far as it cannot be reduced, this variability limits the 

ability to isolate and identify CO2 input from leakage. For soil gas, an alternative process-based 

detection method has been proposed, in which processes such as respiration can be separated 

from leakage (Romanak and others, 2012a). Similar approaches are needed for groundwater 

systems, which can be complex in terms of groundwater variability, mixing, and impact on 

carbonate ions (Romanak and others, 2012b). Site-specific acoustic noise is important to measure 

as part of planning a seismic survey (Pevzner and others, 2011). Noise in other signals is less 

commonly considered; however, it can be critical for success. For example, pressure signal from 

injection can be complicated by other activities, such as distant or future injection or extraction, 

or recovery from such activities.  

Many monitoring techniques rely on collection of a suite of static measurements prior to 

perturbation of the system by injection. Such measurements are typically described as baseline. 

Baseline plays several important roles: it is important to correctly define the purpose of the 

survey for assessment of trends and noise, to assess signal strength, to determine repeatability, or 

to collect a preinjection stable baseline from which later changes can be subtracted. The last 

goal, having a stable baseline against which to detect change, is a derivative of assessment of 

trends, noise, and repeatability. 

II-3-1 Site-specific strength of signal for monitoring technologies 

Successful monitoring design depends on strength of the signal above noise. Within each 

technology, sophisticated techniques are available to assess the strength of the signal. In the 

context of this study, we illustrate some of the interactions of signal strength with site-specific 

parameters. Our goal is not to conduct a comprehensive assessment, but to demonstrate for 

stakeholders the importance of this assessment. Outcomes from this study are to illustrate 

quantitatively why a technique that was successful at one site may be of little value at another 

site and to inspire regulators, operators, financiers, and others stakeholders to invest in proper 

assessment of this element of site-specific design. 

As is illustrated by this study, forward modeling is the workhorse of estimating signal strength. 

However, because of the value of a negative finding (no detection) of ALPMI, a best practice is 

to make measurements at the site to determine experimentally the strength of the signal. For a 3-

D seismic survey, this assessment can be made by testing the response of an array of geophones 

placed in a well to various types of seismic sources at the surface. Such a test can be part of a 

vertical seismic profile (VSP) and is a well-known important part of designing a 3-D survey. 

Similar tests of sensitivity are recommended for pressure and temperature. For example fall-off 

testing, a standard tool of underground injection control, can play this role (Johnson and Lopez, 

2003). Sensitivity tests for pressure might be an injection fall-off test to calibrate pressure 

response to a rate of injection and recovery. A sensitivity test for detection of CO2 in 
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groundwater might be a push-pull test, in which a small, controlled release of CO2 is tested to 

determine the signal produced by rock-water-CO2 interaction (Trautz and others, 2012; Yang and 

others, 2013b, 2013c). 

An element related to signal strength is repeatability, which can usually be collected at the same 

time as signal strength. It is important to repeat the test response of the instrument to the system 

enough times under the same conditions to determine how accurately the test can be duplicated, 

especially if time-lapse measurements are to be made. In a seismic survey, repeatability can be 

formally determined by collecting statistics (Al-Jabri and Urosevic, 2010; Kinkela and others, 

2011). Similar tests of repeatability are recommended for hydraulic pressure and thermal 

perturbation tests. Tests of repeatability are classically conducted for geochemical analysis 

programs using duplicates and blanks; it is important for gas-liquid systems such as CO2 in water 

to test the repeatability of the field sampling protocols as well as the laboratory analysis. 

In the following review, we considered time-lapse 3-D seismic versus depth, bed thickness, and 

porosity; pressure change in an above-zone monitoring interval in terms of interval thickness and 

monitoring well spacing; thermal sensitivity in relationship to depth and distance from signal 

source; and sensitivity of chemical detection of CO2 with respect to ambient aquifer and water 

composition. Each of these findings was subject to in-depth study, many of which have been 

published separately. In addition, we review some other aspects of site-specific monitoring 

explored to less detail during the study.  

II-3-2 Site-specific sensitivity of time-lapse 3-D seismic methods  

During the past several decades of geologic storage monitoring, seismic monitoring methods 

have gained a reputation as high-value performers. The value of seismic monitoring is that a 3-D 

survey volume is one of the few methods that can assess an entire rock volume, from the 

injection zone, including the interwell volumes, through the confining system, and up into the 

overburden or intermediate zone that isolates the deep subsurface from the USDW. Because 

seismic response is sensitive to fluid compressibility, repeating the same 3-D survey over time as 

the CO2 is emplaced and stabilized provides a powerful tool in showing where CO2 has replaced 

water. A 3-D time lapse (4-D) is created by differencing a preinjection survey from the survey 

collected after the CO2 is injected. The areas of change can be interpreted as indicative of change 

in fluid properties including fluid composition and pressure, both of high value to geologic 

storage monitoring (Lumley, 2010).  

Monitoring the area of change in successive 3-D surveys has been demonstrated with high 

success as part of the Sleipner project, offshore beneath the North Sea (for example, Arts and 

others, 2004; Chadwick and Noy, 2010; Williams and Chadwick, 2012). At this setting the area 

of change contributed mostly the replacement of brine by CO2, as little change in pressure has 

been observed within the injection zone. The vertical migration of CO2 through a number of 

locally permeable within-reservoir barriers can be obtained by observation of the lateral spread 

of CO2 in the permeable zones. In addition, the effectiveness of the confining system is shown by 

no change above the top of the injection zone.  

A second project in which the area of change was highly successfully monitored was through a 

number of repeat 3-D surveys as CO2 injections for EOR began at Weyburn field, Saskatchewan 

(White, 2013). At this field, the change in seismic response includes both compositional change 

as CO2 replaces oil water and a pressure effect. In addition, assessment of change in seismic 
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properties of the zones immediately above the reservoir have been identified as potential subtle 

indicators of vertical migration out of the injection zone in localized areas of the field.  

Experience shows, however, that not all seismic data are of equal value in monitoring geologic 

storage. A number of studies have collected 4-D seismic data over geologic storage projects and 

failed to definitively and uniquely map the extent of the CO2 plume. Among the 4-D seismic 

surveys presented that had less than complete confidence in the output of the survey being 

equivalent to the area occupied by changes in CO2 saturation and pressure increase are West 

Pearl Queen, New Mexico (Pawar and others, 2006); Nagaoka, Japan; Otway, Victoria, Australia 

(Urosevic and others, 2011); Pembina Cardium, Alberta Canada (Lawton and Alshuhail, 2007); 

and Cranfield, Mississippi (Zhang and others, 2013). 

Potential reasons for decreased confidence in the survey after the data were collected are diverse 

and difficult to uniquely diagnose. Potential reasons are (1) low sensitivity of the seismic 

response substitution of one fluid by another, (2) noise and static errors in the system above the 

magnitude of the seismic response, (3) nonoptimal data collection conditions, and (4) nonoptimal 

processing. Because of the large number of options available in the system, it is difficult to 

diagnose the reason why the survey performed poorly. In our experience in this project, experts 

have recommended that collection of additional surveys and more data processing have the 

potential to improve the quality the survey such that it would provide the desired value. 

Methods of 3-D seismic data collection and data processing have been heavily invested in for 

resource exploration and management, and a large number of possible combinations of 

approaches are available. It is well known that selection of the correct data collection and 

processing methods is critical to obtaining high-quality data. For example, a number of types of 

seismic sources having different frequency content, surface distribution, repeatability, and 

optimal climate conditions are available such as dynamite in boreholes, weight drop methods, 

and seismic “thumper” trucks capable of creating different types of signals. Recording locations 

can be distributed over the area in different patterns. Distribution of sources and receivers 

provides different types of coverage of the subsurface volume, known as fold. A number of 

different types of recording options are also very important to data quality, for example, the 

possibility of collecting multiple components of ground motion; so-called multicomponent data 

provide potential for breakthrough imaging. Seismic data processing is mature and flexible 

technology, and processing options can be used to optimize many aspects of the rich data 

content. 

However, it is clear from first principles of seismic measurements that detectability of fluid 

substitution is highly site specific. We conducted a series of simplified explorations to provide 

information to regulators and monitoring program designers about the intrinsic characteristics of 

the rock-fluid system (Hovorka and others, 2014a). It is clear that no simple screening tool can 

substitute for a site-specific evaluation by a qualified vendor. However, the purpose of our 

assessment is to identify site-specific parameters that lead to easier and more robust detection of 

CO2 substitution for brine in either a within-zone or above-zone setting. Vendors may be able to 

use the large flexibility within 3-D seismic methods to optimize detection even in a difficult 

setting. However, the screening tools provided will give operators and regulators an alert that 

such optimization of techniques are called for. 
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II-3-3 Sensitivity of above-zone pressure methods for leakage detection 

Pressure is a basic history-matching parameter for reservoirs and is widely used for monitoring 

many subsurface projects. We have explored some novel approaches and limitations, for 

example, the use and limits of continuous pressure measurements from a dedicated observation 

well in a complex injection at Cranfield, Mississippi (Meckel and others, 2013).  

For the selected case study, we chose a method adapted from gas storage monitoring, which 

places a pressure gauge in a laterally continuous permeable formation above the injection zone, 

described as an above-zone monitoring interval (AZMI). Figure 8 shows an idealized 

deployment of AZMI monitoring. The concept underlying this method is that if the confining 

interval isolates the AZMI from the injection zone, a change in pressure from injection in the 

injection zone will not cause a pressure change in the AZMI. Analytical models can be used to 

estimate cross-formational flow should a hydrologically connected pathway connect the injection 

zone with the AZMI (Nordbotten and others, 2004). In this study we considered the 

characteristics of the AZMI that allowed a detectable signal should the zones be hydrologically 

connected. In a separate study we assessed the geomechanical signal that would be transmitted 

from injection zone to an AZMI, using field data from one site (Kim and others, 2013). In 

another study we compared the sensitivity of using pressure versus geochemical signal for 

leakage into an AZMI (Porse, 2013). Above-zone chemistry was used at Ketzin, Brandenburg, 

Germany (Nowak and others, 2013). 

 
Figure 8. Idealized AZMI monitoring design. 
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To assess the sensitivity of the AZMI pressure monitoring technique to different geometries is 

essential to document that no leakage from the injection zone is occurring. If the distance 

between monitoring points is too large, leakage detection cannot be assured and a robust finding 

of retention cannot be made. The spacing between monitoring points is sensitive to the 

hydrologic properties of the system. We developed type curves to determine well leakage 

detectability through pressure monitoring. The type curves are based on a newly developed 

asymptotic solution (Zeidouni and others, 2011). The type curves are presented in dimensionless 

format to be applicable to any set of injection zone and AZMI. Zeidouni and others (2011) 

considered a single AZMI overlying the injection zone and the analytical solution was adapted to 

support evaluation of multiple AZMI (Porse, 2013).  

The pressure signal is a function of the petrophysical properties of both the injection zone (from 

which fluid is leaking) and the AZMI (to which the leakage is occurring). Preliminary modeling 

and screening are required to determine which overlying zones provide the strongest pressure 

signals in response to a given leakage. One or more pressure gauges may then be deployed at 

favorable overlying permeable zones so that pressure measurements can be analyzed for leakage 

detection and characterization. For the design of early detection monitoring, the injection zone 

and potential AZMI were considered to be infinite acting, the simplification used in this study. 

However, if leakage is sustained, pressure will eventually reach the boundaries of the injection 

zone and AZMI, causing larger pressure changes compared with those derived under infinite-

acting conditions. The temporal impact is worth considering. 

Most analytical work considers the leakage risk through a vertical feature with the geometry of a 

flawed well. To extend the analysis, we developed an analytical model for a vertical fluid flow 

planar feature described as a leaky fault (Zeidouni, 2012). The analytical model can be used to 

evaluate the leakage rate and pressure perturbations related to fault leakage both in the injection 

zone and in an overlying formation separated by an impermeable confining layer. The solution is 

extended to evaluate the vertical leakage attenuation considering multiple overlying formations 

with alternating aquitards. Such calculations can be done quickly without the need for spatial and 

time discretization, which can ease uncertainty quantification, and Monte Carlo–type analysis. 

The pressure signature of a leaky fault has been distinguished from that of leaky wells and/or a 

leaky aquitard using analytical solutions.  

Work performed under pressure-based leakage detection in AZMI is organized around three 

coherent subthemes: 

 Inversion of pressure anomaly signals 

 Risk-based detectability analysis 

 Optimization of monitoring network design 

1. Inversion of pressure anomaly signals 

The capability to accurately identify or eliminate concerns about pathways by which stored CO2 

could leak, has leaked, or is leaking from the targeted storage zone is important to operators, 

investors, and regulators. In the current context, a leak event is characterized by its three 

attributes: start time, location, and magnitude. Although many monitoring techniques have been 

improvised over the past decade, pressure-based monitoring technology provides high 

benefit/cost ratio and has the high potential of offering early detection over a large area. 
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Under this subtheme, a pressure-based inversion technique has been developed to reconstruct 

leakage characteristics on the basis of inversion of pressure anomalies. The inversion algorithm 

solves a pressure anomaly deconvolution problem using a forward model that incorporates site 

geology and CO2 injection history. Figure 9 illustrates the results for a synthetic problem in 2D. 

In that case, the goal was to identify leakage history by deconvoluting pressure signals. In 

addition, by coupling pressure deconvolution with an optimization routine, the challenging 

problem of leakage location detection is solved. Detailed description of the algorithm and 

numerical examples can be found in Sun and Nicot (2012). The technology developed here is 

practical (only requires a forward model) and can be readily embedded into an existing risk 

assessment framework. 

 

 

Figure 9. Deconvolution pressure anomalies. Top: plan view of problem set-up; bottom left: 

observed pressure signals (in hydraulic head); and bottom right: comparison between identified 

leakage history and synthetic truth. (Adapted from Sun and Nicot, 2012). 
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2. Risk-based detectability analysis 

A main purpose of this EPA project is to make predictions of the system performance to accept 

and retain the planned volume of CO2 at the planned rate for the planned duration. Reservoir 

models are always uncertain because of conceptualization assumptions and data limitations. 

Therefore, any prediction of the fate of CO2 plume or leakage potential must be accompanied by 

uncertainty quantification (UQ).  

Driven by the need for UQ, this subtheme is concerned with assessing leakage detectability when 

information (for example, forward model) on hand is uncertain. A tool has been developed that 

allows fast assessment of leakage detectability for a given monitoring location and under model 

uncertainty. An example is shown in Figure 10, where dark lines show the detection threshold 

(related to pressure gauge resolution and site noise level). The horizontal axes give the 

probability of pressure exceeding a certain threshold at a given time. The diagnostic tool is site 

specific and incorporates parametric uncertainty such as permeability and compressibility. The 

tool can be used for (a) assessing the suitability of a monitoring location for intercepting leakage 

signals and (b) performing hypothesis tests on observed leakage signals. Forward reservoir 

models are commonly time consuming to run. A reduced-order modeling technique was used to 

perform Monte Carlo simulation required for generating a probability map like the one shown in 

Figure 10. Detailed description of the algorithm and numerical examples can be found in Sun 

and others (2013b). 

 

 

Figure 10. Diagnostic tool for detectability analysis. Color bar is pressure anomaly in psi; dark 

solid lines are different pressure detection thresholds. 
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3. Optimization of monitoring network design 

The ultimate goal of pressure-based monitoring is to institute an optimal monitoring network on 

the basis of site conditions. Given a monitoring budget and desired detection interval (defined as 

time elapsed from onset of leakage to detection by a pressure gauge), the third subtheme is 

concerned with finding optimal monitoring well locations while satisfying the number of 

pressure monitoring locations an operator can afford. Two major design objectives are (a) 

maximization of network coverage and (b) minimization of expected total leakage (in volume or 

mass). The number of monitoring wells that can be deployed is used as a cost constraint. In the 

current context, expected total leakage is defined as the cumulative amount of leakage fluid 

migrated into a monitoring layer before leakage signal is detected by any of the monitoring 

wells. An integer programming problem is formulated and solved. A scenario-based approach is 

used to incorporate model uncertainty and to calculate the optimal solution among all scenarios. 

Detailed description of the algorithm and numerical examples can be found in Sun and others 

(2013a). The optimization algorithm has been applied to aid monitoring network design at a 

proposed storage site in Texas. 

II-3-4 Sensitivity of thermal methods for leakage detection 

Thermal methods are a way of detecting fluid flow from depth across the geothermal gradient. 

They can be used in the negative, to determine that local flow is not the cause of pressure change 

(Tao and others, 2013). Thermal methods are very attractive for monitoring because temperature 

can be measured simply and robustly across a wide variety of environments in real time and is 

highly quantitative. For CO2 storage temperature monitoring has a number of attractive 

characteristics. CO2 can be transported to a site through a surface infrastructure of pipelines and 

delivered into a well at surface temperatures, which are quite cold compared with subsurface 

temperatures. The CO2 plume, therefore, creates a thermal pulse in the reservoir zone. In 

diagnosing performance of the injection well, thermal properties of the cold CO2 can be of high 

utility.. 

Equilibration of the CO2 and reservoir brine away from the injection well with the ambient rock 

water temperature provides a potentially useful leakage signal. Fluids migrating upward through 

a focused path—for example, along a flawed well casing—are hotter than ambient fluids. 

Running a temperature log is the classic method of diagnosing leakage along the rock casing 

annulus where it is incompletely plugged by cement. This is a very useful tool for geologic 

storage monitoring because at many sites retention risks are associated with flawed well 

completions.  

Away from the flowpath, the thermal mass of the surrounding rocks and water attenuates the 

thermal pulse over short distances, limiting its utility of thermal monitoring techniques through 

the reservoir. Temperature data is useful if collected along potentially leaky wells and/or wells 

intersecting potentially leaky faults.  

CO2 injection in saline aquifers induces temperature changes owing to processes such as Joule-

Thompson cooling, endothermic water vaporization, and exothermic CO2 dissolution, besides the 

temperature discrepancy between injected and native fluids. CO2 leaking from the injection zone, 

in addition to initial temperature contrast due to the geothermal gradient, undergoes similar 

processes, causing temperature changes in the above-zone interval. We used numerical 

simulation tools to evaluate temperature changes associated with CO2 leakage from the storage 
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aquifer to an above-zone monitoring interval and to assess the feasibility of monitoring of CO2 

leakage on the basis of temperature data (Zeidouni and others, in press). We considered the 

impact of both CO2 and brine leakage on temperature response for three cases: (1) a leaky well 

co-located with the injection well, (2) a leaky well distant from the injector, and (3) a leaky fault. 

We performed a sensitivity analysis to determine key operational and reservoir parameters that 

control the temperature signal in the above-zone interval.  

Several secondary thermal properties may be of use in diagnosing the reservoir response. Unlike 

pressure, which increases in response to both CO2 and brine leakage, temperature signal may 

differentiate between the leaking fluids. In addition, the strength of the temperature signal 

correlates with leakage velocity, unlike pressure signal, whose strength depends on leakage rate. 

Increasing leakage conduit cross-sectional area increases leakage rate and thus increases pressure 

change in the above-zone interval.  Thermal signal decreases with decreasing leakage velocity, 

thereby reducing temperature cooling and signal. As CO2 saturated fluid moves from zones of 

high pressure toward low pressure, Joule-Thompson cooling is expected to occur, causing minor 

drops in temperature. CO2 dissolution into the water is exothermic, resulting in a slight increase 

in temperature where this reaction occurs. 

Sensitivity of groundwater leakage detection 

Leakage of CO2 to groundwater is an important monitoring parameter for EPA because of the 

role of the Underground Injection Control Program (UIC) in protecting USDW. The key 

elements in this protecting role are the potential for negative impact of CO2 leakage and water 

quality (for example, Carroll and others, 2009; Lu and others, 2009; Apps and others, 2010; 

Mickler and others, 2013). An additional element considered is the extent to which monitoring 

USDW can be used to document CO2 retention, for example, under the Clean Air Act (CAA), 

part RR.  

We classify the environmental factors that may affect sensitivity of detection into chemical 

factors and physical factors. The chemical factors are related to geochemical processes after CO2 

is leaked into the aquifer, such as mineralogy in aquifer sediments, and initial groundwater 

chemistry, which are the focus of the analyses (Yang and others, 2013d). The physical factors are 

related to CO2 migration or transport processes, and variations include confined or unconfined 

aquifers, variable groundwater velocity, groundwater recharge, extraction, aquifer heterogeneity, 

and monitoring location and depth. Evaluating physical factors on geochemical sensitivity to 

CO2 leakage in USDW is one of our ongoing studies. In addition, technical factors, including 

different sampling protocols, methods, and instruments, may also affect the measurements of the 

geochemical parameters. Impacts of the technical factors on measurements of geochemical 

parameters could be minimized, however, through careful selection of instruments and sampling 

methods and good sampling design. 

We selected groundwater parameters pH, dissolved inorganic carbon (DIC), alkalinity, and 

HCO3
-
 as primary indicators of leakage of CO2 into groundwater and then further evaluated and 

ranked their sensitivity to CO2 leakage. We also selected three sites with various characteristics 

located in Texas (Smyth and others, 2009; Romanak and others, 2012b), Mississippi (Yang and 

others, 2013b), and Montana (Wilkin and DiGiulio, 2010). The site-specific sensitivity of the 

response to leakage was tested considering reactive minerals in the aquifer sediments and initial 

aquifer chemistry. The detailed methodology and data are included in Yang and others (2013c). 
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Various minerals could be present in aquifer sediments. Three of the most common minerals 

were selected (quartz, albite, and calcite) and simulated in the generic model as carbonate-poor 

aquifer (quartz + 5% albite) and carbonate-bearing aquifer (quartz + 1% calcite). For the first set 

of models, aquifer chemistry is held constant, with a composition of the fresh water aquifer 

(Dockum and Ogallala formations) above the SACROC aquifer in Scurry County, Texas 

(Romanak and others, 2012b). As a follow-on, the influence of aquifer water composition was 

compared with that of the Cranfield shallow aquifer in Natchez, Mississippi (Yang and others, 

2013e), and a shallow aquifer in Montana (Wilkin and DiGiulio, 2010). 

The results of this study show that the presence of carbonate in the monitored aquifer has an 

important impact on groundwater monitoring for leakage. Models of aquifers with nonreactive 

mineralogy such as quartz exhibit a leakage response to CO2 as negative shifts in pH, positive 

shifts in total inorganic carbon, and negligible changes in alkalinity (Yang and others, 2013c), 

results which are similar to the findings reported by Wilkin and DiGiulio (2010).  

Groundwater pH calculated in the carbonate-bearing aquifer is buffered compared with 

groundwater pH in the carbonate-poor aquifer. Alkalinity is almost unchanged in response to 

leakage into the carbonate-poor aquifer, whereas alkalinity increases in the carbonate-rich 

aquifer as the CO2 leakage rate increases. As expected, HCO3
-
 shows very similar behavior as 

alkalinity after CO2 is leaked.  

It is very interesting to note that responses of DIC and dissolved CO2 in groundwater to CO2 

leakage rate appear to be independent of aquifer mineralogy, although DIC and dissolved CO2 

could be slightly higher in the carbonate-rich aquifer than in the carbonate-poor aquifer. Among 

the four geochemical parameters, dissolved CO2 and DIC are better indicators of CO2 leakage in 

groundwater than pH and alkalinity. We are now collaborating with Intellectual Optical Systems, 

a high-tech company, to develop real-time in situ dissolved CO2 sensors that can be used for CO2 

leakage detection. Preliminary field tests have shown that dissolved CO2 is a good indicator for 

CO2 leakage detection (Yang, 2013; Yang and others, 2014b).  

For a specific site, a general step-wise procedure for CO2 leakage detection in USDW above 

geological carbon sequestration sites can be followed (Yang and others, 2013e): Step 1, baseline 

characterization of groundwater chemistry and aquifer mineralogy at the sensitive area in 

USDW; Step 2, selection of a set of geochemical parameters (such as pH, DIC, alkalinity, trace 

metals) on the basis of results of characterization in Step 1; Step 3, validation and test of the set 

of geochemical parameters with laboratory experiments, numerical modeling approaches, and 

controlled-release field tests; and Step 4, determination of whether these parameters are sensitive 

to CO2 leakage. If so, they may be used for CO2 leakage detection; if not, this set of geochemical 

parameters may not be reliable for CO2 leakage detection.  

The EPA UIC program addresses potential impacts on USDW from CO2 injection activities 

using the Safe Drinking Water Act (SDWA). Because little information on field tests is 

available, impacts of CO2 leakage on USDW discussed in the EPA UIC program rely mostly on 

the modeling analyses. Understanding of sources and mobilization mechanisms of trace metals 

and the ways CO2 may impact these processes is important. 

In the last three years, we conducted integrated studies by combining laboratory experiments, 

field push-pull tests, and reactive transport modeling to assess potential impacts of CO2 leakage 

on groundwater quality (Mickler and others, 2013; Yang and others, 2013a, 2013b, 2014a). 

Laboratory batch experiments of water-rock-CO
2
 interactions were conducted to identify 
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geochemical processes affecting aquifer mineralogy and aqueous geochemistry and provided 

preliminary information on designing single-well push-pull tests. During single-well push-pull 

tests, groundwater equilibrated with CO2 was injected into an aquifer, and after a specified time, 

groundwater was extracted for analyses of major and trace elements, providing direct 

information on water-rock-CO2 interactions. A preliminary reactive transport model with general 

information on the target aquifer and geochemical information from the laboratory batch 

experiments were used to design the push-pull tests. Then the reactive transport model was 

further refined to analyze the results of the field push-pull tests and identify geochemical 

processes that dominate changes in groundwater quality caused by CO2 leakage. These results, 

funded by several research programs, were synthesized for this project and simplified for the 

workbook (Hovorka and others, 2014a). 

Four sets of water-rock-CO2 batch experiments were run for about one-half year and were 

incrementally sampled over the course of the experiments to quantify changes in aqueous 

geochemistry caused by CO2 introduction. Sedimentary samples and groundwater used in the 

batch experiments were collected from different aquifers. Carbonate content varies in the 

sedimentary samples (carbonate-poor sediments collected from Helena and Cranfield sites and 

carbonate-rich sediments collected from the Edwards and Brackenridge sites). Experimental 

results show that introducing CO2 into the batches led to a sharp drop in pH. This pH reduction 

led to dissolution of minerals (carbonates and silicates). For the batch experiments with 

carbonate-rich sediments, carbonate dissolution proceeded until calcite saturation was reached 

and pH was buffered. For the batch experiments with carbonate-poor sediments, carbonate 

dissolution proceeded until carbonates were exhausted.  

It appears that dissolution of carbonates and silicates proceeds kinetically; however, carbonate 

dissolution was much faster than silicate dissolution. Mobilization of trace metals was also 

observed after CO2 gas was introduced into the batches. Although trace metals can be 

categorized into several groups on the basis of their observed behavior after CO2 introduction, 

mobilization of trace metals may be dominated by two geochemical processes: dissolution of 

carbonates and silicates, such as Mn, Sr, and Cd, and desorption from clay mineral surfaces, such 

as As and Pb. Note that some trace metals, such as As, Mo, and Se, were initially mobilized from 

clay mineral surfaces owing to the sharp increase in pH associated with an Ar flush at the 

beginning of the experiment and then sequestered, most likely as a result of a drop of pH with 

the introduction of CO2 and precipitation of clay minerals resulting in increased clay mineral 

surfaces. Maximum concentrations of trace metals observed in the batch experiments are less 

than their maximum contamination levels (MCLs).  

Single-well push-pull tests were conducted at the Cranfield site where aquifer sediments contain 

little carbonate and the Brackenridge site where aquifer sediments contain as much as 20% 

carbonates. The Cranfield shallow aquifer is confined, about 70 m below land surface, whereas 

the Brackenridge shallow aquifer is unconfined, about 3.5 m below land surface. Results of the 

two field tests show that mobilization of major cations and trace metals was dominated by 

geochemical processes similar to those observed in the batch experiments. Whereas trace metal 

concentrations increased, maximum trace metal concentrations remained below EPA MCLs; for 

instance, in the Cranfield push-pull test, the maximum As level was ~3% of its EPA MCL, and 

the maximum Pb level was only ~1% of its EPA action level. Overall reaction rates of major 

cations calculated from the push-pull test are generally lower than those estimated from batch 

experiments. However, overall estimated reaction rates depend on case-specific parameters and 
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may not be directly applicable to other sites, even similar ones, because varying dilution factors 

(water:rock ratio in the batch experiment and mixing between background water and injected 

water in field test) were not considered in the comparison of overall rates estimated from the 

push-pull tests. 

A reactive transport model was used to interpret results of the push-pull test conducted in the 

Cranfield aquifer. The model simulates groundwater flow and solute transport in the aquifer, 

coupled with various geochemical reactions, such as aqueous complex, mineral 

dissolution/precipitation, and adsorption/desorption from clay mineral surfaces. Hydraulic 

parameters used in the model were calibrated to fit measurements of a conservative tracer (Br), 

which was added to the injected water. The geochemical model was tested with the results of the 

batch experiment. The reactive transport model reproduces the overall trends of groundwater pH, 

alkalinity, and major ions (Ca, Mg, Si, Na, and K) and also concentrations of some trace metals 

in the Cranfield push-pull test. A review of this literature is reported in the recent paper by Yang 

and others (2014a). 

II-4. Other tools considered 

During the development of the project, many tools were considered, and although they did not 

continue to full development in the context of the workbook, the following notes are presented to 

record progress. Discussion starts with tools that are used in the reservoir and moves to tools that 

are used at shallower depths. 

Pressure within the reservoir is the most fundamental tool for matching observed to modeling 

response. A field analysis of injected data collected as part of the Southeast Regional Carbon 

Sequestration Partnership project at Cranfield shows the strength of this method for assessing the 

connectivity of the reservoir, as well as significant uncertainty created by heterogeneity of the 

reservoir and uncertain boundary conditions (Meckel and others, 2013). This study observed that 

at this site, the pressure signal at a dedicated observation well created by beginning production 

was smaller than the variability of the pressure resulting from other factors—presumably 

pressure was responding complexly to multiphase flow and boundary conditions in a 

heterogeneous reservoir. If the well production is considered as a proxy for out-of-zone leakage, 

in-zone pressure would not be able to detect the change. Other experiments showed that mass-

balance methods were ineffective in detecting the start of producing wells, showing that in-zone 

pressure has limitations as a method of assuring conformance of the injection (using production 

as a proxy for unintended leakage). Additional experiments with other reservoirs would be 

valuable to determine the site-specific limits of pressure and mass-balance methods for 

monitoring conformance.  

Direct fluid sampling has been widely considered as a monitoring technique for geologic 

storage. Research-oriented projects have used sampling methods such as the U-tube that can 

extract high-frequency samples with reduced fluid mixing (Freifeld and others, 2005). High-

frequency sampling yields important data to assess processes such as multiphase fluid 

interactions with natural and introduced tracers (for example, Kharaka and others, 2006; 

Boreham and others, 2011; Lu and other, 2013). In addition, data about dissolution of CO2 into 

water (Mito and Xue, 2011, Lu and other, 2012) are useful to calibrate conceptual models of 

dissolution. However, experience shows that sampling a two-phase fluid system with a well 

provides only a limited interrogation of what happens in the pore system. In particular, after CO2 

arrival at any perforated part of the well, CO2 will preferentially migrate into the well. Unless the 
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well is strongly produced, water will be displaced from the well back into the formation and will 

not be possible to sample, except in the inactive stagnant lower parts of the well. Direct sampling 

cannot provide high-quality information about the distribution of fluids in the porosity outside 

the well because the well itself strongly fractionates multiphase fluids. In addition, specialized 

sampling and laboratory technologies are needed to conserve dissolved phases that are sensitive 

to pressure and temperature (for example CO2) when a sample is brought to the surface. Fluid 

reconstruction via modeling is needed. 

In addition to the issue of if geochemical sampling in the reservoir produces data relevant to the 

project goals, sampling can be of high cost and risk. Preserving well conditions such that 

sampling can occur is difficult and can limit other types of monitoring. We note that an idle well 

is subject to more rapid corrosion than an injector or a producer and that techniques for 

managing corrosion in idle wells can damage the geochemical sampling. High-frequency 

sampling has a high cost in terms of installation, operation, and analysis, and would only be 

needed at times and places where it could answer a specific question. 

For commercial projects, we think it likely that the need for geochemical data from the reservoir 

will be reduced or absent. Issues of rock-water reactivity could be addressed at modest cost in 

the laboratory. Only where a material uncertainty arises (thus far not identified in studies) would 

field sampling be needed.  

If information about arrival of CO2 at a well is needed, a number of other technologies may be 

preferable. A perforated well will rapidly fill with CO2, displacing brine, and result in a strong 

and diagnostic change in the trend of pressure at the surface that is conventionally used by 

operators to identify CO2 “breakthrough” to the well. Combined with bottom-hole 

instrumentation and logging, additional information about the nature of breakthrough can be 

extracted (Verma and others, 2011). Other methods that do not require perforation may have 

advantages in commercial settings, such as (1) better detection of change above the reservoir, (2) 

longer well life, and (3) simplified well handling. 

Wireline logging is another high-value technique for making measurements to confirm the 

performance of the reservoir in accepting CO2. Pulsed neutron methods and sonic logging time-

lapse cased-hole tools have been tested for CO2 detection (for example, Sakurai and others, 

2005; Butsch and others, 2013). If boreholes are constructed of nonconductive materials, 

resistivity can be added to the tool set (Mito and Xue, 2011). Wireline logs provide high-

resolution sampling of fluid changes very near the borehole. However, because of this high 

resolution, borehole construction and management can be significant in creating noise. Fluids in 

perforated sections of the borehole, both those placed in the borehole such as workover and 

“kill” fluids and those that enter the borehole from the formation such as CO2, can invade the 

formation and create a false appearance of change. We detected interference with sonic and 

resistivity logs from a complex observation well construction that required a larger than 

conventional borehole with an array of tubing-encapsulated cables and other instruments 

installed on the outside of the casing and cemented in place (Butsch and others, 2013).  

Site-specific parameters that impact wireline log tool detection of CO2 in the reservoir and in the 

overburden include fluid and rock properties (Ellis and Singer, 2007). For example, pulsed 

neutron tools are highly sensitive to Cl
-
. In water low in total dissolved solids, detection of CO2 

substituted for water may be low resolution, and other tool responses may be needed. Because of 

the flexibility with which modern tools can be operated, proprietary software available through 
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logging service companies was recommended as the best method of assessing if an expected 

fluid substitution is detectable at a site. If logs are collected in a perforated well, when the CO2 

arrives at the well it will displace water. This displacement creates issues for logging programs 

for several reasons. Well control is needed to insert tools into wells that are filled with CO2, 

which can involve adding dense brine known as “kill fluid.” This allochthonous brine disturbs 

near-well conditions. In addition, change in fluids within the well requires correction for wireline 

measurements.  

Gravity measurements are of interest for monitoring CO2 storage because they respond to 

replacement of high-density water by low-density CO2 (Krahenbuhl and Li, 2012). However, the 

maturity of the tool for CO2 monitoring use is low. One application of gravitometers on the sea 

floor application at Sleipner field in the North Sea has had positive results (Alnes and others, 

2011), and one application of gravitometers within the well was also encouraging at Cranfield, 

Mississippi (Dodds and others, 2013). Several other deployments are being tested. The geometry 

of the injected CO2, the ambient variability of the density of the host rocks, and the amount of 

porosity into which CO2 can be substituted are site-specific aspects that could impact success; 

additional modeling is needed.  

Geophysics in optimized geometries has been successfully deployed in many geologic storage 

research projects. Most tests have used acoustic (seismic) tools in downhole vertical seismic 

profile and cross-well geometries (Daley and others, 2007; Fabriol and others, 2011). Several 

tests have used electrical methods with success (Kiessling and others, 2010; Carrigan and others, 

2013). Placement of receivers or both sources and receivers at depth increases signal strength 

and resolution and decreases noise. Other technology improvements such as other types of 

geophysics, permanent installation of sources, and continuous data collection are in 

consideration. The value of these technologies is high in research because they probe the value of 

the technology and provide high-resolution observational data for evaluation of conceptual and 

numerical models of two-phase flow. However, the value of these geometries will require 

screening against purpose for commercial operations. High success in research should not, by 

itself, provide motivation for deployment in settings where the purpose is very different. In 

particular, the high resolution of cross-well and downhole deployment geometries can result in 

limited volumetric coverage. Methods for assessment of site-specific limitations of geophysics 

are mature and follow a pattern similar to the 3-D case presented.  

Advanced seismic data collection and processing that can reduce noise, enhance signal, and 

push the site-specific limitations of the technology should be considered, and new breakthroughs 

are emerging. Technologies such as collection of multicomponent data and Amplitude versus 

Offset (AVO) are research topics that have become mainstream (Pérez and others, 1999; Young 

and LoPiccolo, 2005; Sodagar and Lawton, 2011). The importance of accessing the deep 

expertise available, developing diverse advanced techniques, and critically evaluating the value 

of technology against site-specific goals, signal, noise, and repeatability is noted. 

Tilt and surface deformation have become high interest for monitoring geologic storage sites 

because they are surface- or shallow-borehole-based measurements that have potential to provide 

information over a wide area about pressure increase at depth, which is likely to be important to 

ALPMI in geologic storage. A number of technologies can be used in time lapse. To measure 

elevation change, one can used repeated elevation surveys, for example using GPS technologies 

or Interferometric Synthetic Aperture Radar (InSAR) based on differencing radar images 

produced by satellites to create interferograms. Tilt meters can be deployed at the surface or in 
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boreholes to measure very small changes in geometry of these features, and these methods can be 

combined. Mature applications are conducted in areas where land surface change is linked to 

risk, for example at volcanoes (USGS, 2009).  

Researchers assessing the InSalah geologic storage project, near the Krechba gas field, Algeria, 

were successful in using InSAR to detect surface elevation change in response to elevated 

pressure at depth (Vasco and others, 2010). Signal was used to diagnose nonconformant pressure 

response, where a fracture system in the lower part of the confining system had allowed pressure 

to increase over a thicker interval and closer to the surface than predicted (Rutqvist and others, 

2008).  

On the basis of our efforts to apply these technologies to storage sites in the Gulf Coast (Swart, 

2010), we have found the applicability of these methods to be strongly site specific. The viability 

of the approach being fit to purpose can be analyzed in terms of signal strength and noise. Signal 

is modeled using the geometry of layered rocks with various properties. Rock geomechanical 

properties for sites we have studied are underconstrained to make robust predictions of 

geomechanical signal, although progress is being made (Kim and Hosseini, 2013). In addition, 

we note that noise is strongly site specific. Groundwater can have a strong signal on land surface 

elevation both from withdrawal and from recovery (Leake, 2013) and be dynamic at the scale 

relevant to storage. In addition, noise from vegetation and other land use and moisture in the 

atmosphere must be assessed to make sure that extraction of signal is viable, and these factors 

are highly site specific (Foster and others, 2006). 

Soil gas geochemistry is another technology that has been widely tested at geologic storage sites. 

Soil gases have been widely used to locate hydrocarbon resources (Jones and Drozd, 1983) and 

assess other connectivity between the surface and subsurface (Ma and others, 2012). The success 

of this technology is encouraging to researchers seeking a tool that allows fairly direct 

measurement of any leakage from depth to be measured at the most relevant earth/atmosphere 

interface and reported in accounting frameworks. However, since the first geologic storage 

experiment at Weyburn issues of noise and sensitivity have been noted (Wilson and Monea, 

2004, Riding and Rochelle, 2009). The process-based method (Romanak and others, 2012a) 

developed at the GCCC as part of the SECARB project is one step toward isolation of signal 

from noise.  

Site-specific parameters that need to be assessed are the strength of any leakage signal and the 

noise and trend in the environment. Leakage signal is related to the mass balance of the 

migrating CO2 compared with processes such as microbial and root respiration, barometric 

pumping and soil gas dissolution that attenuate signal. Noise is related to temporal variability in 

process, including change over time. We note at some field sites that past uses have strong 

impact on stability of soil gas compositions; in particular, naturally high methane and 

hydrocarbon degradation resulting from past uses are problematic (Wolaver and others, 2013). 

III. Field test sites 

One goal of the project was to test the results of evaluation against the growing array of CO2 -

specific field measurements gathered from field test sites. The portfolio of field measurements 

available to the project has grown substantively, with monitoring from 28 projects surveyed 

(Table 2). In addition, a wide variety of experience outside of the geologic storage test literature 
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such as contaminant clean-up sites, gas storage, oil production, other types of deep well 

injection, and ecosystem studies was used as industrial analogs for monitoring technologies. 

 

Table 2. Examples of storage tests with outcomes considered in this study. 

Site name Location 

Major monitoring 

case(s) examined Overview citations Project stage 

SACS/CO2STORE 

monitoring projects at 

Sleipner 

Near Sleipner gas 

field, Norwegian North 

Sea 

4-D seismic, gravity Arts and others, 2004; 

Chadwick and others 

2008; Chadwick and 

Noy, 2010; Eiken and 

others, 2011, many 

others 

R&D program 

completed, commercial 

injection continues 

IEAGHG Weyburn 

Monitoring program 

Weyburn oil field, 

Saskatchewan 

4-D seismic, soil gas, 

in-zone geochemistry, 

microseismic  

Wilson and Monea, 

2004; Riding and 

Rochelle, 2009; 

Verdon and others, 

2011; White, 2013 

R&D program 

completed, commercial 

EOR continues 

West Pearl Queen West Pearl oil field, 

New Mexico 

4-D seismic, soil gas 

PFT tracers 

Pawar, and others, 

2006; Wells and 

others, 2007 

Completed 

Nagaoka Near Nagaoka oil field, 

Japan 

4-D wireline logging, 

in-zone fluid sampling, 

cross-well seismic, 

surface seismic 

Saito and others, 2006; 

Mito and Xue, 2011 

Post-closure 

monitoring 

Frio test South Liberty oil field, 

Texas 

Cross-well seismic and 

VSP, wireline logging, 

tracers, and in-zone 

and above-zone fluid 

sampling, groundwater 

and soil gas post 

injection  

Hovorka and others, 

2006; Daley and 

others, 2007; Daley 

and Hovorka, 2010 

Completed 

Zama Zama oil field, Alberta Reservoir 

geochemistry and PFT  

Smith and others, 2011 R&D program 

completed, commercial 

EOR continues 

Snøhvit Near Snøhvit oil field, 

Barents Sea, offshore 

Norway 

In-zone pressure 

measurements, 4-D 

seismic 

Hansen and others, 

2013 

Continues 

In Salah Near Krechba gas 

field, Algeria 

InSAR, 4-D seismic Cooper and Members 

of the CO2 Capture 

Project 2009, overview 

R&D program 

completed 

SECARB Early Test Cranfield field, 

Mississippi 

In-zone and above-

zone pressure, wireline 

logging, 4-D seismic, 

in-zone natural and 

introduced tracers, 

ERT, cross-well 

seismic, groundwater 

geochemistry, soil gas, 

microseismic  

Hovorka and others, 

2013; Ajo-Franklin 

and Daley, 2013; 

Zhang and others, 

2013; Yang and others, 

2013e 

Nearing completion 
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Site name Location 

Major monitoring 

case(s) examined Overview citations Project stage 

AEP Mountaineer American Electric 

Power, Mountaineer 

Station, New Haven, 

West Virginia  

Reservoir pressure 

response 

 Pilot completed, 

commercial scale 

canceled 

SWP –SACROC SACROC oil field, 

Scurry County, TX 

Groundwater 

chemistry 

Romanak and others, 

2008, 2012b 

R&D program 

completed, commercial 

EOR continues 

ZERT experiment Montana State 

University, Bozeman, 

MT 

Controlled release, soil 

gas, ecosystem 

response, atmospheric 

measurements 

Lewicki and others, 

2009; Fessenden and 

others, 2009; Spangler 

and others, 2009; 

Oldenburg and others, 

2010 

Several stages 

complete 

CO2 field lab Svelvik Ridge, Norway Controlled release, 

vadose and saturated 

zone complexity 

Barrio and others, 

2013 

Completed 

Otway Near Naylor gas field, 

Victoria, Australia 

Seismic methods, VSP, 

reservoir, tracer and 

ambient geochemistry, 

soil gas, groundwater 

Jenkins and others, 

2011 

Stage 1 and 2 

completed 

CO2SINK Ketzin Near Ketzin gas field, 

Brandenburg, 

Germany 

4-D seismic, ERT, in-

zone sampling, 

introduced tracers, 

thermal survey 

Giese and others, 

2009; Boreham and 

others, 2011 

Completed, post-

closure monitoring 

SWP-Aneth Aneth oil field, Utah Microseismic survey Zhou and others, 2010 Completed 

SWP Pump Canyon Pump Canyon coalbed 

methane, New Mexico 

Introduced tracers Wilson and others, 

2012 

R&D completed 

MRCSP Michigan test Gaylord, Michigan Cross-well seismic, 

wireline logging 

Battelle, 2011 R&D completed 

Pembina Cardium Alberta, Canada Reservoir chemistry, 

seismic 

Johnson and others, 

2011; Lawton and 

Alshuhail, 2007 

R&D completed 

SECARB Citronelle Citronelle oil field, 

Alabama 

In-zone and above-

zone fluid pressure and 

sampling, cross-well 

seismic, soil gas 

survey 

South East Regional 

Carbon Sequestration 

Partnership, 2013 

Nearing completion 

Illinois Decatur Project Decatur, Illinois In-zone and above-

zone fluid pressure and 

sampling, cross-well 

seismic microseismic, 

soil gas and 

groundwater survey 

Finley, 2013 Continuing 

Bell Creek field Bell Creek field, In-zone and above-

zone pressure, pulsed 

Plains CO2 Reduction Continuing 
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Site name Location 

Major monitoring 

case(s) examined Overview citations Project stage 

Montana neutron logging Partnership, 2013 

Shell Quest Alberta, Canada Commercial 

monitoring plan and 

risk assessment 

Shell, 2010 Planned 

Aquistore Near Estevan, 

Saskatchewan 

Commercial 

monitoring plan and 

risk assessment 

Whittaker and others, 

2009 

Drilling underway 

Gorgon Barrow Island, 

Northwest Australia 

Commercial 

monitoring plan and 

risk assessment 

Flett and others, 2009 Drilling underway 

FutureGen 2.0 Morgan County, 

Illinois 

Commercial 

monitoring plan and 

risk assessment 

Permit documents Planned 

NRG Parish plant 

capture 

West Ranch field, 

Texas 

Commercial 

monitoring plan and 

risk assessment 

Confidential Planned 

Air Products/Lake 

Charles/Hastings 

Hastings field, near 

Alvin, Texas 

Commercial/research 

monitoring plan and 

risk assessment 

Confidential Continuing 

 

IV.  Develop consensus  

The consensus development activities conducted for this study have two interlocking goals. First, 

to access information about limitations of technologies in most cases requires in-person 

discussion. Only a few studies in the literature formally report the limitations of technologies 

(Urosevic and others, 2011). However, researchers have often delved deeply during pilot studies 

for technologies that were not deployed at full scale into reasons for poor or uninterpretable 

signal. Interaction with researchers was needed to understand distinctions between poor signal 

because of the specific technology and the way it was deployed and the characteristics of the site 

such as high noise or poor signal. The second reason for consensus building is to obtain peer 

review through talks and workshops, as well as through peer-reviewed papers as the project 

progressed. 

During the planning for the project we designed an expert project panel. At project start, we held 

the expert panel meeting with the Monitoring Network hosted by the International Energy 

Agency Greenhouse Gas Research and Development Programme (IEAGHG R&D Programme) 

annual meeting. This meeting worked so well we used this group as the expert panel, presenting 

updates and getting feedback each year (Table 3). In addition a number of opportunities arose to 

work in detail with committees reviewing monitoring plans. Although these interactions cannot 

be reported in detail here because of confidentially, learnings from these activities have been 

taken up and used to guide the assessments and the workbook. Exchange of concrete information 

with other review panelists was especially important, as well as consideration in detail of the 

practical aspects of deployment of a monitoring program. It has been important to work with 
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stakeholders from diverse perspectives such as researchers funded by the DOE’s Regional 

Carbon Sequestration Partnership (RCSP) program, EPA staff and contractors, EOR operators 

and project developers, and representatives of source industries. Table 3 highlights 86 examples 

of consensus-building activities of highest value to the site-specific study both in terms of 

collecting information and in terms of having information reviewed and receiving feedback. 

Many of these activities were funded and leveraged by other GCCC projects. A more complete 

inventory of activities is presented in the “News and Events” section of the GCCC webpage 

(www.gulfcoastcarbon.org). 

  

Table 3. Consensus-building activities conducted that supported this project. 

Activity Meeting Place Date 

Kick-off meeting IEAGHG R&D Program Natchez, MS May 5, 2010 

Technical meeting UK-Texas CCS Technology and Legislation 

Seminar 

Pittsburgh, PA  May 9, 2010 

Industry dialog  Review of GCCC groundwater studies  Houston, TX, and UK via 

web 

May 19, 2010  

Public workshop  Environmental Defense Fund and the 

National Resources Defense Council 

Sacramento, CA June 9, 2010  

International review UK, BGS, and DECC Edinburgh, Scotland July 7, 2010 

Symposium on role of EOR 

in CCS  

Massachusetts Institute of Technology Boston, MA July 23, 2010  

Technical conference  International Conference on Greenhouse Gas 

Technologies (GHGT10) 

Amsterdam September 19-

23, 2010  

Technical conference Southwest Regional Partnership Phase II 

SACROC groundwater study 

Albuquerque, NM  September 21-

22, 2010  

Technical meeting  DOE/NETL Regional Carbon Sequestration 

Partnership Review Meeting  

Pittsburgh, PA  October 5-7, 

2010  

Technical meeting Carbon Sequestration Leadership Forum 

(CSLF) Annual Meeting  

Warsaw, Poland October 6-8, 

2010 

Technical meeting  60th Annual Gulf Coast Association of 

Geological Societies Convention 

San Antonio, TX  October10-12, 

2010  

Technical meeting  IEAGHG workshop: Natural Releases of 

CO2: Building Knowledge for CO2 Storage 

Environmental Impact Assessments 

Maria Laach, Germany  November 2-4, 

2010  

Technical meeting  Society of Petroleum Engineers International 

Conference on CO2 Capture, Storage and 

Utilization 

New Orleans, LA November 10-

12, 2010  

Technical meeting  8th Annual EOR Carbon Management 

Workshop 

Houston, TX December 6-7, 

2010  

Technical meeting  Japanese Research Institute of Innovative Japan December 9, 
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Activity Meeting Place Date 

Technology for the Earth (RITE)  2010  

Technical meeting  3rd U.S.-China CO2 Emissions Control 

Science & Technology Symposium  

Hangzhou, China December 10-

12, 2010  

Technical meeting  American Geophysical Union Fall Meeting San Francisco, CA December 13-

17, 2010  

Technical meeting  4 Kingdoms CCS Initiative: First Technical 

Workshop 

 Al Khobar, Saudi Arabia February 28, 

2010  

Data contribution RCSP Risk Assessment and Simulation 

Questionnaire 

via e-mail  June 2011 

Review Confidential monitoring review, ARAMO Houston, TX June 2011 

Field collaboration planning Weyburn-Midale CO2 Project Saskatchewan, Canada March 1-4, 

2011  

Technical meeting  SECARB Sixth Annual Stakeholder's 

Meeting 

Atlanta, GA March 9-10, 

2011  

Technical meeting 10th Annual Conference on Carbon Capture 

and Sequestration 

Pittsburgh, PA May 2-5, 2011  

Technical meeting  Texas Commission on Environmental Quality 

Trade Fair 

Austin, TX  May 3-4, 2011  

Technical meeting, project 

review 

International Energy Agency Greenhouse Gas 

Monitoring Network Meeting  

Potsdam, Germany June 7-9, 2011  

 Research meeting  CO2CARE Workshop  Potsdam, Germany June 9, 2011  

Technical meeting  Trondheim CCS Conference Trondheim, Norway June 14-16, 

2011  

Review meeting BIGCCS, Norwegian Research Council Jaegtvolden, Norway June 17-18, 

2011 

Review  Consulting to Stratus, Assessment of CCS 

monitoring technologies 

via e-mail June 2011 

Data contribution RCSP Risk Assessment and Simulation 

Questionnaire 

via e-mail review  

Review Pew Center on Global Climate Change 

Accounting Framework report  

digitally June 2011 

Technical review Electric Power Research Institute (EPRI) 

Capture and Storage Technical Meeting 

Palo Alto, CA July 26, 2011 

Knowledge sharing C12 Energy Austin, TX July 27, 2011 

Technical meeting KEPS-KORDI CCS Workshop Houston, TX July 28, 2011  

Technical meeting United Nations Framework Convention on Abu Dhabi September 11, 
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Activity Meeting Place Date 

Climate Change Technical Workshop 2011  

Technical meeting The Midwestern Governors Association 

(MGA), in partnership with the Great Plains 

Institute 

Houston, TX September 27-

30, 2011  

Technical meeting NSF Science, Engineering and Education for 

Sustainability Workshop  

Minneapolis, MN October 8, 

2011  

Technical meeting Society of Petroleum Engineers Forum The Algarve, Portugal  October 9-14, 

2011  

Workshop Next Generation Project: Texas Assembly  Fort Worth, TX October 21, 

2011  

Technical meeting The National Academies Division on Earth & 

Life Studies 

San Diego, CA October 28, 

2011  

Technical meeting 2011 International Forum on CCS and Energy 

Storage Technologies 

Taipei, Taiwan November 1-2, 

2011  

Technical meeting Global CCS Institute Austin Regional 

Meeting  

Austin, TX November 8, 

2011  

Technical meeting NETL Carbon Storage Program Infrastructure 

Annual Review Meeting 

Pittsburgh, PA November 15-

17, 2011  

Technical meeting GCCC/Houston British Consulate 

Collaborative Technical Workshop 

Austin, TX December 2-3, 

2011  

Technical meeting  American Geophysical Union Fall Meeting  San Francisco, CA December 5-9, 

2011  

Field collaboration Kerr-Weyburn Investigation Regina, Saskatchewan, 

Canada 

December 12, 

2011  

Technical meeting University of Texas Carbon Capture and 

Storage Conference (UTCCS-1) 

Austin, TX January 25-27, 

2012  

Technical meeting Carbon Management Technology Conference Orlando, FL February 7-9, 

2012 

Technical meeting 7th Annual Southeast Regional Carbon 

Sequestration Partnership Stakeholders’ 

Briefing 

Mobile, AL March 7-8, 

2012  

Technical meeting Permian CCUS Center, Colorado School of 

Mines 

Golden, CO April 5, 2012  

Review Confidential monitoring plan related to 

HECA 

California  2012 

Technical meeting China-Australia Geologic Storage Technical 

Symposium 

 Beijing, China  April 17, 2012  

Technical meeting Annual Carbon Capture, Utilization, and 

Sequestration Conference  

Pittsburgh, PA April 30-May 

3, 2012  
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Activity Meeting Place Date 

Technical meeting International Knowledge Sharing in 

MVA/MMV 

Mobile, AL May 15-17, 

2012  

Short course 2012 AAPG Southwest Section Convention  Fort Worth, TX May 19-22, 

2012  

Technical meeting DOE-FE-China Exchange Project Meeting Houston, TX May 30, 2012  

Technical meeting IEA GHG Joint Network Meeting  Santa Fe, NM June 19, 2012 

Technical meeting International Workshop on Geological CO2 

Sequestration 

Jilin University, 

Changchun, China 

July 4-5, 2012  

Technical meeting Water and Biodiversity Impacts of Energy 

Change, The Nature Conservancy  

Denver, CO July 12-13, 

2012  

Technical meeting 34th International Geological Conference Brisbane, Australia  August 5-10, 

2012  

Course The Center of Excellence in Research and 

Innovation in Petroleum, Mineral Resources 

and Carbon Storage (CEPAC) and the Carbon 

Sequestration Leadership Forum (CSLF)  

Pontifical Catholic 

University of Rio Grande 

do Sul, Porto Alegre, 

Brazil 

July 30 - 

August 3, 2012  

Research collaboration Center for Frontiers of Subsurface Energy 

Security Meeting 

Austin, TX August 20, 

2012 

Technical meeting NETL Carbon Storage R&D Project Review 

Meeting 

Pittsburgh, PA August 21-23, 

2012  

Technical meeting International Conference on Greenhouse Gas 

Technologies (GHGT-11) 

 Kyoto, Japan November 18-

22, 2012  

Technical meeting United Nations Framework Convention for 

Climate Change/COP-18  

Durban, South Africa November 27, 

2012  

Technical meeting American Geophysical Union Meeting San Francisco, CA December 3-7, 

2012  

Project review Progress Review of STAR Grant Research on 

Carbon Sequestration 

EPA, Washington DC January 7, 

2013  

Technical meeting RITE CCS Technical Workshop Tokyo, Japan January 20, 

2013  

Technical meeting 8th Annual SECARB Stakeholders Briefing  Atlanta, GA March 4, 2013  

Technical meeting 3rd Annual Korean CCS conference Jeju Island, Jeju City, 

South Korea 

March 15-16, 

2013  

Course 1st Course Advanced Topics in Carbon 

Capture and Storage 

Pontifical Catholic 

University of Rio Grande 

do Sul, Porto Alegre, 

Brazil  

April 1-4, 2013  

Technical meeting Carbon Sequestration Leadership Forum CO2 Rome, Italy  April 18, 2013  
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Activity Meeting Place Date 

Monitoring Interactive Workshop 

Technical meeting 14th Annual MIT Carbon Sequestration 

Forum 

Cambridge, MA April 24-25, 

2013  

Technical meeting 12th Annual Conference on Carbon Capture 

Utilization & Sequestration 

Pittsburgh, PA May 13-16, 

2013 

Technical meeting 7th Trondheim CCS Conference Trondheim, Norway June 4-6, 2013  

Technical meeting Workshop, Center for Climate and Energy 

Solutions, Permian CCUS Center, and the 

Railroad Commission of Texas  

Houston, TX June 11-12, 

2013  

Technical meeting American Geophysical Union's Science 

Policy Conference 

Washington, DC  June 24-26, 

2013  

Technical meeting Carbon Storage R&D Project Review 

Meeting 

Pittsburgh, PA  August 20-22, 

2013  

Technical meeting and 

project review 

IEAGHG Monitoring Network and 

Environmental Research Network  

Canberra, Australia August 26-30, 

2013  

Short course Global CCS Institute's Capacity Development 

Program for Mexico  

On-line August 28-

November 6, 

2013  

Review Confidential Review Futuregen2 Richland, WA  2013 

Technical meeting IEAGHG-OPEC Workshop on CCS in the 

UNFCCC Clean Development Mechanism 

Vienna, Austria October 29-30, 

2013  

Technical meeting CSLF Side Meeting  Washington, DC  November 4-6, 

2013  

Technical meeting Norway's Ministry of Petroleum and Energy, 

the International Energy Agency, the US 

DOE, and the Norwegian Research Council  

Houston, TX  November 19-

21, 2013  

Technical meeting CO2 Conference Week Midland, TX  December 9, 

2013  

 

V. Workbook preparation 

The results of a decade of intense research and development of geologic storage as an essential 

component of carbon capture and storage has created a large inventory of practical experience, 

which has been compiled into “best practice” manuals, protocols, regulatory guidance, and 

regulations with relevance to monitoring design (Table 1). Many of these documents recommend 

or require site-specific adaptation of the planning and execution of monitoring at the site; 

however, details about how to adapt the monitoring plan to the site are limited. The 

recommendations provided in this study complement the literature reviewed. 
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In addition, the outcomes of dozens of storage tests conducted globally provide a rich literature 

that gives examples of how projects pragmatically adapted the knowledge at the start of the 

project to conditions at the site, and in many cases documents the outcome of the design (Table 

2). However, this wealth of information shows that the types of adaptations are very diverse and 

nonsystematic. It is difficult to pick out which adaptations are to the characteristics of the site, 

and which adaptations are from other variables such as the expertise and interests of the research 

team or different authors of the of the funding opportunities for the research. The findings from 

field tests are discussed, but only in selected cases can the data be used in a fully quantitative 

way to match the monitoring design and consideration of site characteristics to the success of the 

measurement.  

The recommendations from this study have been compiled in a workbook (Hovorka and others, 

2014a) that will be submitted for publication. Reviewers recommended a format that could 

accompany a part-day short course looking specifically at the site-specific aspects of monitoring 

would be of highest value. Figure 11 shows a flowchart of the methods illustrated in the 

workbook. 

 
Figure 11. Flowchart of AZMI-based tool selection. 

To support the workbook format, we developed case studies. After several drafts, we rejected 

“real world” cases for two reasons. Experiments with students showed that real cases are too 

complex to examine in a short-course format, as time is wasted on details that are not important 

for the issues to be illustrated. A greater barrier is that few real cases of problematic migration or 

leakage from geologic storage were identified. A case of unexpected CO2 lateral migration 
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resulting in leakage to surface at Salt Creek field, Wyoming, is too sparsely documented to be a 

useful case (U.S. Department of Interior, 2006). Most reported other problems are related to well 

maintenance, which is a universal problem for many types of wells, and fall outside of the site-

specific scope of this study. Initially we considered adapting data from a site to add a site failure; 

however, the possibility that an artificial case would be confused with a successful storage 

project seemed too high. Therefore the failure cases used in the workbook are excerpted from 

real cases but highly idealized and simplified. 

We emphasize that the purpose of the workbook is to support the need for investment in proper 

detailed design by a team of monitoring technology experts by letting prospective site developers 

and regulators experiment with the basics of designing an appropriate site and a specific 

monitoring plan. The main message of the guidebook is to show that such investment is essential 

to a successful monitoring design. In particular, extrapolating a successful design from one site 

to another site without a detailed evaluation is not recommended. 

VI. Conclusions 

Guidance and rules for geologic storage generally agree that site-specific approaches are needed, 

but they provide few specifics to match the monitoring plan to the site. The absence of a method 

for accomplishing this matching is a substantive risk to successful development of plans. 

Concurrence of diverse stakeholders in CO2 storage projects such as operators, and finance, 

legal, and regulatory teams is needed. Without a method for making choices, risk (1) missing a 

signal that the system was not responding as expected or (2) measuring an unexpected signal that 

was not actually important to the project success but was misinterpreted by stakeholders. Either 

of these outcomes could damage the reputation of the project and imperil its completion.  

We surveyed the substantive experience gained from monitoring injection for more than 50 years 

and 28 recent, relevant CO2 storage monitoring programs and discussed successes, failures, 

uncertainties, and lessons learned with the members of the research teams. This analysis explores 

the reasons that different monitoring approaches are needed at different CO2 geologic storage 

sites and makes recommendations of processes that could be used to fit a monitoring approach to 

a site. Three major sources of site-specific differences are recognized: (1) differences in project 

goals, (2) differences in mechanisms that might lead to failure of the project to reach the goals, 

and (3) differences in ability to detect a signal from a failure or incipient failure to reach the 

project goals. Differences in site-specific goals result from different concerns at each site from 

the geologic or cultural setting or from input from different stakeholders. It is important that 

these goals be stated quantitatively. We propose a new term—“assessment of low probability 

material impact” (ALPMI)—to facilitate the discussion of unexpected but possible outcomes that 

would fail to meet the project goals, and recommend that the ALPMI be modeled as a step in 

design of a robust monitoring program. Once the signal produced by an ALPMI or trend toward 

ALPMI is determined from the quantitative goals, a monitoring program can be designed to 

determine whether the signal is or is not found. We provide an analysis of tool-specific 

assessments that can be used to evaluate if the ALPMI signal is detectable at a site. Site-specific 

variables such as depth, thickness, and geochemistry can have an important impact on signal 

strength. Noise is also an important site-specific variable. 

The information collected was used to publish a sequence of papers and a workbook that 

synthesizes the outcomes in a format prepared for knowledge-sharing. 
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