306 research outputs found

    The Spouse\u27s Perspective of Agricultural Education as a Career

    Get PDF
    The national shortage of agricultural education teachers is an urgent concern because it results in less students prepared to seek careers in agriculture and other STEM disciplines. Factors including the excessive demands placed on agriculture teachers have contributed to teacher turnover. These demands often spill over into other life domains, such as the family. Since individuals in the family domain can exert an influence on career decisions of their loved ones, it is important to understand the influence of the agricultural education profession on perceptions and work-family conflict of the agriculture teacher\u27s spouse or partner (henceforth spouse). Additionally, job satisfaction has been found to be a strong indicator of a teacher\u27s intent to remain in the profession, however little research has examined the influence of the spouse\u27s attitudes or personal factors related to job satisfaction. This study sought to describe the attitudes of the agriculture teachers\u27 spouse regarding agricultural education as a career, specifically to examine factors associated with the spouse\u27s satisfaction with agricultural education. An online survey consisting of two sections: 1) spouses\u27 demographic information; and 2) spouses\u27 attitudes towards agricultural education (e.g., agriculture teachers\u27 work-family conflict (WFC), satisfaction with career, family supportive work-culture) was distributed to a national sample of 699 agriculture teachers\u27 spouses. Spouses indicated relatively high satisfaction with agricultural education and moderate levels of WFC and family-supportive work culture. Significant predictors of spouses\u27 satisfaction with agricultural education include total family household work hours, WFC, and family supportive work culture. Gender and whether the spouse had participated in SBAE were not significant. Implications exist to reduce WFC and to continue to promote a positive family supportive work culture within the agricultural education profession

    Evaluation of the accuracy of bacterial genome reconstruction with Oxford Nanopore R10.4.1 long-read-only sequencing

    Get PDF
    Whole genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40x depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting

    Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects

    Get PDF
    Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world\u27s food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security

    Scratching Beneath the Surface : Intentionality in Great Ape Signal production

    Get PDF
    Despite important similarities having been found between human and animal communication systems, surprisingly little research effort has focussed on whether the cognitive mechanisms underpinning these behaviours are also similar. In particular, it is highly debated whether signal production is the result of reflexive processes, or can be characterised as intentional. Here, we critically evaluate the criteria that are used to identify signals produced with different degrees of intentionality, and discuss recent attempts to apply these criteria to the vocal, gestural, and multimodal communicative signals of great apes and more distantly related species. Finally, we outline the necessary research tools, such as physiologically validated measures of arousal, and empirical evidence that we believe would propel this debate forward and help unravel the evolutionary origins of human intentional communication

    Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 14, issue 1

    Get PDF
    Contents include: Far From Inundated, A Word form the President, BHAGS Words of Welcome, Remarks from Conference Co-Chair Ed Sobel, Keynote Speech Given by Chuck Smith Introduced by Michele Volansky, The Telephone Monologues: Five Monologues Written for the 2003 LMDA Conference introduced by Janet Allard, Telephone, Billy, The Visitors, A Drag Queen, Choice, Don\u27t Know Much About Holly-turgy Outline, Reflections on Conference 2003, Elect Better Actors, Neo-Romantic Manifesto, Pullet Surprise-Call for Nominations, and Regional News-Know Your Regional Vice Presidents. Issue editors: D.J. Hopkins, Shelley Orr, Liz Engelman, Madeleine Oldham, Jacob Zimmerhttps://soundideas.pugetsound.edu/lmdareview/1028/thumbnail.jp

    Jet-Powered Molecular Hydrogen Emission from Radio Galaxies

    Get PDF
    H2 pure-rotational emission lines are detected from warm (100-1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z<0.22 observed with the Spitzer IR Spectrograph. The summed H2 0-0 S(0)-S(3) line luminosities are L(H2)=7E38-2E42 erg/s, yielding warm H2 masses up to 2E10 Msun. These radio galaxies, of both FR radio morphological types, help to firmly establish the new class of radio-selected molecular hydrogen emission galaxies (radio MOHEGs). MOHEGs have extremely large H2 to 7.7 micron PAH emission ratios: L(H2)/L(PAH7.7) = 0.04-4, up to a factor 300 greater than the median value for normal star-forming galaxies. In spite of large H2 masses, MOHEGs appear to be inefficient at forming stars, perhaps because the molecular gas is kinematically unsettled and turbulent. Low-luminosity mid-IR continuum emission together with low-ionization emission line spectra indicate low-luminosity AGNs in all but 3 radio MOHEGs. The AGN X-ray emission measured with Chandra is not luminous enough to power the H2 emission from MOHEGs. Nearly all radio MOHEGs belong to clusters or close pairs, including 4 cool core clusters (Perseus, Hydra, A 2052, and A 2199). We suggest that the H2 in radio MOHEGs is delivered in galaxy collisions or cooling flows, then heated by radio jet feedback in the form of kinetic energy dissipation by shocks or cosmic rays.Comment: ApJ in press, 40 pages, 18 figures, 14 table

    The plasmidome associated with Gram-negative bloodstream infections: a large-scale observational study using complete plasmid assembliess

    Get PDF
    Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative ‘backbone’ of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine
    • …
    corecore