16 research outputs found

    Epigenetic Silencing of Host Cell Defense Genes Enhances Intracellular Survival of the Rickettsial Pathogen Anaplasma phagocytophilum

    Get PDF
    Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum–infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1) expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease

    Outcome of Colorectal Cancer Patients Treated with Combination Bevacizumab Therapy: A Pooled Retrospective Analysis of Three European Cohorts from the Angiopredict Initiative

    Get PDF
    Background/Aims: This study is aimed at analyzing the survival rates and prognostic factors of stage IV colorectal cancer patients from 3 European cohorts undergoing combination chemotherapy with bevacizumab. Methods: Progression free-survival (PFS) and overall survival (OS) were analyzed in 172 patients using the Kaplan–Meier method and uni- and multivariable Cox proportional hazards regression models. Results: The median PFS was 9.7 and the median OS 27.4 months. Patients treated at centers in Germany (n = 97), Ireland (n = 32), and The Netherlands (n = 43) showed a median PFS of 9.9, 9.2, and 9.7 months, OS of 34.0, 20.5, and 25.1 months, respectively. Patients >65 years had a significantly shorter PFS (9.5 vs. 9.8 months) but not OS (27.4 vs. 27.5 months) than younger patients. High tumor grade (G3/4) was associated with a shorter PFS, T4 classification with both shorter PFS and OS. Fluoropyrimidine (FP) chemotherapy backbones (doublets and single) had comparable outcomes, while patients not receiving FP backbones had a shorter PFS. In multivariable analysis, age and non-FP backbone were associated with inferior PFS, T4 classification and therapy line >2nd were significantly associated with poor PFS and OS. Conclusion: The observed survival rates confirm previous studies and demonstrate reproducible benefits of combination bevacizumab regimens. Classification T4, non-FP chemotherapy backbone, and age >65 were associated with inferior outcome

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    Anaplasma phagocytophilum-Borrelia burgdorferi Coinfection Enhances Chemokine, Cytokine, and Matrix Metalloprotease Expression by Human Brain Microvascular Endothelial Cells▿

    No full text
    Borrelia burgdorferi and Anaplasma phagocytophilum coinfect and are transmitted by Ixodes species ticks. Clinical indicators suggest that A. phagocytophilum coinfection contributes to the severity, dissemination, and, possibly, sequelae of Lyme disease. Previous in vitro studies showed that spirochete penetration through human brain microvascular endothelial cells of the blood-brain barrier is facilitated by endothelial cell-derived matrix metalloproteases (MMPs). A. phagocytophilum-infected neutrophils continuously release MMPs and other vasoactive biomediators. We examined B. burgdorferi infection of brain microvascular barriers during A. phagocytophilum coinfection and showed that coinfection enhanced reductions in transendothelial electrical resistance and enhanced or synergistically increased production of MMPs (MMP-1, -3, -7, -8, and -9), cytokines (interleukin 6 [IL-6], IL-10, and tumor necrosis factor alpha), and chemokines (IL-8 and macrophage inflammatory protein 1α) known to affect vascular permeability and inflammatory responses
    corecore