83 research outputs found

    pH Sensitive visible or SWIR Quantum Dot Nanoprobes using Conformation- Switchable Copolymeric Ligands

    Get PDF
    International audienceIntracellular and extracellular pH are key parameters in many physiological processes and diseases. For example, the extracellular pH of the tumor micro-environment is slightly more acidic than in healthy tissue. In vivo mapping of the extracellular pH within the tumor would therefore improve our understanding of the tumor physiology. Fluorescent semiconductor quantum dots (QDs) represent interesting probes for in vivo imaging, in particular in the shortwave infrared range (SWIR). Here, pH-sensitive QD nanoprobes are developed using a conformation-switchable surface chemistry. The central fluorescent QD is coated with a copolymer ligand and conjugated to gold nanoparticle quenchers. As the pH decreases from physiological (7.5) to slightly acidic (5.5-6), the copolymer reversibly shrinks, which increases the energy transfer between the QD and the gold quenchers and modulates the QD fluorescence signal. This enables the design of ratiometric QD probes for biological pH ranging emitting in the visible or SWIR range. In addition, these probes can be easily encapsulated and remain functional within ghost erythrocyte membranes, which facilitates their in vivo application

    NanoPaint: a tool for rapid and dynamic imaging of membrane structural plasticity at the nanoscale

    Get PDF
    Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Zwitterionic polymer ligands: An ideal surface coating to totally suppress protein-nanoparticle corona formation?

    Get PDF
    International audienceIn the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum. We show for the first time a complete absence of protein corona around SB-coated NPs, while PC-and CB-coated NPs undergo reversible adsorption or partial aggregation. These dramatic differences cannot be described by naïve hard/soft acid/base electrostatic interactions. Single NP tracking in the cytoplasm of live cells corroborate these in vitro observations. Finally, while modification of SB polymers with additional charged groups lead to consequent protein adsorption, addition of small neutral targeting moieties preserves antifouling and enable efficient intracellular targeting

    Imaging of Red-Shifted Light From Bioluminescent Tumors Using Fluorescence by Unbound Excitation From Luminescence

    Get PDF
    Early detection of tumors is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. In vivo optical bioluminescence imaging has been widely used in the field of preclinical oncology to visualize tumors and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, the light emitted by the majority of commonly used luciferases is usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal, and calling for optimized optical imaging methodologies. We have previously shown that red-shifting of bioluminescence signal by Fluorescence Unbound Excitation from Luminescence (FUEL) is a mean to increase bioluminescence signal sensitivity detection in vivo. Here, we applied FUEL to tumor detection in two different subcutaneous tumor models: the auto-luminescent human embryonic kidney (HEK293) cell line and the murine B16-F10 melanoma cell line previously transfected with a plasmid encoding the Luc2 firefly luciferase. Tumor size and bioluminescence were measured over time and tumor vascularization characterized. We then locally injected near infrared emitting Quantum Dots (NIR QDs) in the tumor site and observed a red-shifting of bioluminescence signal by (FUEL) indicating that FUEL could be used to allow deeper tumor detection in mice

    Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

    Get PDF
    Abstract: Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Analyse de la structure electronique des heterojonctions a-Si_1_-_xY_x: H/c-Si (Y=C ou Ge) par l'etude des proprietes de transport

    No full text
    SIGLEINIST T 75229 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore