172 research outputs found
Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues
Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered
Effects of different unstable supports on EMG activity and balance
This study analysed the equilibrium strategies and EMG activity during postural equilibrium in four different unstable surfaces. Thirteen team sport males were tested on a FLAT surface and on three different wobble boards (JAKOBS® with easy multidirectional displacements, FREEMAN with strong multidirectional displacements and LATERAL with unidirectional lateral displacements). They had to maintain single-limb stance during 5 s for each condition. The right foot centre of pressure (COP) position and its variability with concomitant EMG activity of soleus (SOL), tibialis anterior (TA), peroneus longus (PL) and extensor digitorum longus (EXD) muscles were recorded. Subjects maintained balance by making seesaw rotations. LATERAL and FREEMAN boards demonstrated significantly greater COP variability than JAKOBS® and FLAT in both anteroposterior and mediolateral directions. Similarly, PL, EXD, and TA muscles EMG activity were significantly greater using the LATERAL board, and in some cases using FREEMAN as compared with JAKOBS® and FLAT. These results highlighted new knowledge about central nervous system organisation while keeping equilibrium with a predominant anteroposterior control
Performance determinants of fixed gear cycling during criteriums
Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO , maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered
The effect of quadriceps muscle length on maximum neuromuscular electrical stimulation evoked contraction, muscle rchitecture, and tendon-aponeurosis stiffness
Muscle-tendon unit length plays a crucial role in quadriceps femoris muscle (QF) physiological adaptation, but the influence of hip and knee angles during QF neuromuscular electrical stimulation (NMES) is poorly investigated. We investigated the effect of muscle length on maximum electrically induced contraction (MEIC) and current efficiency. We secondarily assessed the architecture of all QF constituents and their tendon-aponeurosis complex (TAC) displacement to calculate a stiffness index. This study was a randomized, repeated measure, blinded design with a sample of twenty healthy men aged 24.0 ± 4.6. The MEIC was assessed in four different positions: supine with knee flexion of 60◦ (SUP60); seated with knee flexion of 60◦ (SIT60); supine with knee flexion of 20◦ (SUP20), and seated with knee flexion of 20◦ (SIT20). The current efficiency (MEIC/maximum tolerated current amplitude) was calculated. Ultrasonography of the QF was performed at rest and during NMES to measure pennation angle (θp) and fascicle length (Lf ), and the TAC stiffness index. MEIC and current efficiency were greater for SUP60 and SIT60 compared to SUP20 and SIT20. The vastus lateralis and medialis showed lower θp and higher Lf at SUP60 and SIT60, while for the rectus femoris, in SUP60 there were lower θp and higher Lf than in all positions. The vastus intermedius had a similar pattern to the other vastii, except for lack of difference in θp between SIT60 compared to SUP20 and SIT20. The TAC stiffness index was greater for SUP60. We concluded that NMES generate greater torque and current efficiency at 60◦ of knee flexion, compared to 20◦ . For these knee angles, lengthening the QF at the hip did not promote significant change. Each QF constituent demonstrated muscle physiology patterns according to hip and/or knee angles, even though a greater Lf and lower θp were predominant in SUP60 and SIT60. QF TAC index stiffened in more elongated positions, which probably contributed to enhanced force transmission and slightly higher torque in SUP60. Our findings may help exercise physiologist better understand the impact of hip and knee angles on designing more rational NMES stimulation strategies
Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein
BACKGROUND: The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. METHODS: One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. RESULTS: Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. CONCLUSIONS: In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. TRIAL REGISTRATION: The present trial has been registered at ClinicalTrials.gov (NCT02128516)
Intra- and inter-rater reproducibility of ultrasound imaging of patellar and quadriceps tendons in critically ill patients
Since the outset of body image reconstruction for diagnosis purposes, ultrasound has been
used to investigate structural changes located in tendons. Ultrasound has clinical applications
in the intensive care unit, but its utility for tendon imaging remains unknown. Thus, we
aimed to determine intra- and inter-rater reproducibility of measures obtained by images
generated through morphological tendon sonographic analysis recorded from critically ill
patients. We designed a cross-sectional study to assess thickness, cross-sectional area,
and echogenicity of patellar and quadriceps tendons in a convenience sample formed with
20 critically ill patients. Two independent raters (experienced and novice) recorded repeated
measures, checking for agreement (Kappa statistics) and reliability (Intraclass coefficient
Correlation-ICC and Bland-Altman). The quality of images acquired by the two independent
raters substantially agreed (k = 0.571–1.000), regardless of the region on the patellar tendon
or the studied tendon (patellar or quadriceps). Regardless of how much experience the rater
had, their repeated records (intra-rater reliability) always demonstrated almost complete
correlation, ICC ranging from 0.89 to 0.98 for both tendons in all outcomes. At the same
way, the statistically significant inter-rater ICC ranging from 0.87 to 0.97. Both repeated
measures by the raters (intra-rater) and the repeated single and double measures between
the raters (inter-rater) presented a minimum measurement error constituting a predominant
pattern of random variability. We conclude that ultrasound imaging acquisition performed by
independent raters for tendon thickness, CSA, and echogenicity monitoring of critically ill
patients are acceptable and are not influenced by rater experience
The effect of quadriceps muscle length on maximum neuromuscular electrical stimulation evoked contraction, muscle architecture, and tendon-aponeurosis stiffness
Muscle-tendon unit length plays a crucial role in quadriceps femoris muscle (QF) physiological adaptation, but the influence of hip and knee angles during QF neuromuscular electrical stimulation (NMES) is poorly investigated. We investigated the effect of muscle length on maximum electrically induced contraction (MEIC) and current efficiency. We secondarily assessed the architecture of all QF constituents and their tendon-aponeurosis complex (TAC) displacement to calculate a stiffness index. This study was a randomized, repeated measure, blinded design with a sample of twenty healthy men aged 24.0 ± 4.6. The MEIC was assessed in four different positions: supine with knee flexion of 60° (SUP60); seated with knee flexion of 60° (SIT60); supine with knee flexion of 20° (SUP20), and seated with knee flexion of 20° (SIT20). The current efficiency (MEIC/maximum tolerated current amplitude) was calculated. Ultrasonography of the QF was performed at rest and during NMES to measure pennation angle (θp) and fascicle length (Lf), and the TAC stiffness index. MEIC and current efficiency were greater for SUP60 and SIT60 compared to SUP20 and SIT20. The vastus lateralis and medialis showed lower θp and higher Lf at SUP60 and SIT60, while for the rectus femoris, in SUP60 there were lower θp and higher Lf than in all positions. The vastus intermedius had a similar pattern to the other vastii, except for lack of difference in θp between SIT60 compared to SUP20 and SIT20. The TAC stiffness index was greater for SUP60. We concluded that NMES generate greater torque and current efficiency at 60° of knee flexion, compared to 20°. For these knee angles, lengthening the QF at the hip did not promote significant change. Each QF constituent demonstrated muscle physiology patterns according to hip and/or knee angles, even though a greater Lf and lower θp were predominant in SUP60 and SIT60. QF TAC index stiffened in more elongated positions, which probably contributed to enhanced force transmission and slightly higher torque in SUP60. Our findings may help exercise physiologist better understand the impact of hip and knee angles on designing more rational NMES stimulation strategies
The dynamic conformational landscape of the protein methyltransferase SETD8
Elucidating the conformational heterogeneity of proteins is essential for understanding
protein function and developing exogenous ligands. With the rapid development of experimental
and computational methods, it is of great interest to integrate these approaches to illuminate the
conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT),
which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent
inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse
X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular
dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state
models, built via an automated machine learning approach and corroborated experimentally, reveal
how slow conformational motions and conformational states are relevant to catalysis. These
findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via
its detailed conformational landscape
Correction: Babault et al. Usefulness of Surface Electromyography Complexity Analyses to Assess the Effects of Warm-Up and Stretching during Maximal and Sub-Maximal Hamstring Contractions: A Cross-Over, Randomized, Single-Blind Trial. Biology 2022, 11, 1337
There was an error in the original publication [...
- …