134 research outputs found

    evaluation of the variability contribution due to epistemic uncertainty on constitutive models in the definition of fragility curves of rc frames

    Get PDF
    Abstract In the framework of uncertainty propagation in seismic analyses, most of the research efforts were devoted to quantifying and reducing uncertainties related to seismic input. However, also uncertainties associated to the definition of constitutive models must be taken into account, in order to have a reliable estimate of the total uncertainty in structural response. The present paper, by means of incremental dynamic analyses on reinforced concrete frames, evaluates the effect of the epistemic uncertainty for plastic-hinges hysteretic models selection. Eleven different hysteretic models, identified based on literature data, were used and seismic fragility curves were obtained for three different levels of maximum interstorey drift ratio. Finally, by means of analysis of variance techniques, the paper shows that the uncertainty associated to the hysteretic model definition has a magnitude similar to that due to record-to-record variability

    Post‐earthquake estimates of different ground motion intensity measures for the 2012 Emilia earthquake

    Get PDF
    Estimates of the earthquake ground motion intensity over a geographical area have multiple uses, that is, emergency management, civil protection and seismic fragility assessment. In particular, with reference to fragility assessment, it is of interest to have estimates of the values of different ground-motion intensity measures in order to correlate them with the observed damage. To this purpose, the present paper uses a procedure recently proposed in the literature to estimate the ground-motion intensity for the 2012 Emilia mainshocks, considering different groundmotion intensity measures and directionality effects. Groundmotion prediction equations based on different site effect models, and spatial correlation models are calibrated for the Emilia earthquakes. The paper discusses the accuracy of the shakemaps obtained using the different soil effect models considered and presents the obtained shakemaps as supplementary material. The procedure presented in the paper is aimed at providing ground motion intensity values for seismic fragility assessment and is not intended as a tool to estimate shakemaps for rapid emergency assessment

    Behavior factor of concrete portal frames with dissipative devices based on carbon-wrapped steel tubes

    Get PDF
    AbstractThe key element characterizing the seismic vulnerability of existing prefabricated RC structures, not designed for earthquake actions, are friction-based connections between structural members; mainly those between beams and columns and beams and roofing beams. The paper discusses the effectiveness of dissipative connectors made of carbon wrapped steel tubes. In particular, it presents the results of Incremental Dynamic Analyses on portal frames, aimed at evaluating behavior factor values to be used in design. A simplified formula for estimating the behavior factor is also proposed. Results of nonlinear IDAs suggest that the introduction of these dissipative devices in friction-based beam-column joints provides an effective connection between structural members and, in addition, reduces the forces transmitted to columns, improving the seismic behavior of the entire structure

    Experimental characterization of the mechanical behaviour of U-shaped dissipative devices

    Get PDF
    Energy dissipation devices are used in earthquake engineering in order to reduce the negative effects of ground-motions on structures, thus limiting damage to structural and non-structural components. Different technologies have been proposed to this aim, i.e. viscous fluid dampers, friction-based dampers, hysteretic dampers, etc. Among the different solutions available the present paper focuses on a specific type of hysteretic dampers, U-shaped dissipators. They were first proposed in the 70s and to date have found limited application in the design practice, mainly in buildings with structural walls, exploiting the relative displacement between adjacent walls to dissipate energy. The paper presents the results of an experimental campaign aimed at characterizing the mechanical behaviour of energy dissipators with linear movement, based on U-shaped steel plates. Different configurations were designed and tested, imposing displacement cycles of increasing amplitude. The paper discusses the observed energy dissipation capacity and the stability of the hysteretic cycles

    Large-scale seismic damage scenario assessment of precast buildings after the May 2012 Emilia earthquake

    Get PDF
    In May 2012, two strong earthquakes hit the northern Italy revealing the significant seismic vulnerability of precast reinforced concrete structures and causing severe damage and many collapses, and high economic losses. After the lesson learnt from these events, more reliable seismic design criteria have been established for the design of new structures and different approaches have been proposed for the seismic assessment of the existing structures. In this context, the paper presents the results of a first application of the PRESSAFE-disp method, recently proposed by the authors, allowing to define the fragility curves of precast RC buildings at various limit states, including collapse. A stock of 91 precast buildings in the industrial area of San Felice sul Panaro (Modena) was selected as a benchmark case study to verify the reliability of the method in assessing seismic damage scenarios. In particular, with reference to the 2012 seismic ground-motion, two large-scale stochastic models are outlined to predict the number of the buildings collapsed in the area. The first one is based on a Monte Carlo simulation which incorporates the evaluation of the uncertainties, while the second one is a direct simplified calculation. Comparative considerations on the outcomes of the two methods for different seismic intensities are discussed, including the directionality effect of the ground-motion. To test the soundness of the simulations, the results of the two methods are compared with the real data collected through in-situ surveys. The procedures proposed here result, on average, in good agreement with the observed damage scenario. It is worth noting that, due to the inherent simplicity of the methods, they could be implemented to perform scenario-based seismic loss assessments to estimate the financial consequences of an earthquake affecting one or more industrial areas, and to drive the decision-making process for the seismic retrofit of existing precast RC buildings

    Empirical seismic fragility for the precast RC industrial buildings damaged by the 2012 Emilia (Italy) earthquakes

    Get PDF
    The paper analyses the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy. The damage level in 1890 buildings was collected, classified and examined. Damage matrices were then evaluated, and finally, empirical fragility curves were fitted using Bayesian regression. Building damage was classified using a six-level scale derived from EMS-98. The completeness of the database and the spatial distribution of the buildings investigated were analysed using cadastral data as a reference. The intensity of the ground motion was quantified by the maximum horizontal peak ground acceleration, which was obtained from ShakeMaps. Copyright © 2017 John Wiley & Sons, Ltd

    Notched mini round determinate panel test to calculate tensile strength and fracture energy of fibre reinforced cement-stabilised rammed earth

    Get PDF
    The use of natural fibres (like hemp or bamboo) to improve the mechanical performances of rammed earth structures is not new in construction practice in many parts of the world. However, little scientific investigation has been carried out so far to better understand the real improvement obtained by the addition of fibres. In a recent publication [1], the feasibility of notched mini Round Determinate Panels (mRDP) has been investigated with the aim of deriving a procedure to estimate the intrinsic material properties of Fibre Reinforced Shotcrete (FRS). It was found that it was possible to recover the tensile strength and the fracture energy of the material using an inverse analysis of the experimental data and the well-known Olesen constitutive model [2]. In this paper, the use of the notched mini round determinate panel test to characterise the post-cracking performances of Cement Stabilised Rammed Earth (CSRE) was investigated. For quality control issues, in this study the soil mix consisted of crushed limestone stabilised with 8% cement by soil mass and compacted at its optimum water content (11%). Three specimens were made of CSRE alone and three samples were made of fibre-reinforced CSRE. The fibres used in this experimental campaign were unbundled synthetic copolymer fibres, 54 mm long and 0.3 mm thick. This paper discusses the applicability of a laboratory test conceived for concrete samples to rammed earth specimens. It also presents the comparison between the performances of CSRE materials with and without fibres

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Contatti

    No full text
    Per scaricare tutti gli altri documenti relativi al corso è necessario iscriversi alla lista di distribuzione

    Earthquake Engineering 2018 Lectures

    No full text
    corecore