109 research outputs found

    Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis

    No full text
    Summary Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution

    Antibody-Negative Paraneoplastic Autoimmune Multiorgan Syndrome (PAMS) in a Patient with Follicular Lymphoma Accompanied by an Excess of Peripheral Blood CD8+ Lymphocytes

    No full text
    Paraneoplastic autoimmune multiorgan syndrome (PAMS) is a life-threatening autoimmune disease associated with malignancies. Here, we present a patient initially misdiagnosed with “chronic” Stevens–Johnson syndrome. Over a year later, the patient was diagnosed with stage IV follicular lymphoma and treated with an anti-CD20 antibody. At this time, his skin condition had significantly worsened, with erythroderma and massive mucosal involvement, including in the mouth, nose, eyes, and genital region. Histopathology revealed lichenoid infiltrates with interface dermatitis, dyskeratoses, necrotic keratinocytes, and a dense CD8+ infiltrate with strong epidermotropism. Direct and indirect immunofluorescence tests for autoantibodies were negative. Remarkably, we retrospectively discovered a chronic increase in peripheral CD8+ lymphocytes, persisting for over a year. Consequently, the patient was diagnosed with antibody-negative PAMS. Three weeks later, he succumbed to respiratory failure. This dramatic case highlights the challenges in diagnosing PAMS, particularly in cases where immunofluorescence assays are negative. Importantly, we observed, for the first time, a chronic excess of CD8+ peripheral blood lymphocytes, associated with PAMS, consistent with the systemic, autoreactive T-cell-driven processes that characterize this condition

    Single Site Fluorination of the GM<sub>4</sub> Ganglioside Epitope Upregulates Oligodendrocyte Differentiation

    No full text
    Relapsing multiple sclerosis is synonymous with demyelination, and thus, suppressing and or reversing this process is of paramount clinical significance. While insulating myelin sheath has a large lipid composition (ca. 70–80%), it also has a characteristically large composition of the sialosylgalactosylceramide gangliosde GM<sub>4</sub> present. In this study, the effect of the carbohydrate epitope on oligodendrocyte differentiation is determined. While the native epitope had no impact on oligodendroglial cell viability, a single site OH → F substitution is the structural basis of a significant increase in ATP production that is optimal at 50 μg/mL. From a translational perspective, this subtle change increases the amount of MBP+ oligodendrocytes compared to the control studies and may open up novel therapeutic remyelination strategies

    Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation

    No full text
    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1. What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2. What reference materials should be developed for use in environmental and ecotoxicological studies? 3. Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO2 nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be required to derive criteria that can be used to generate such categories, that would also include aspects of the material structure and physical behaviour

    Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the Arabidopsis Cdk1 Homolog CDKA;1[C][W]

    Get PDF
    Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis

    A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant <em>Arabidopsis thaliana</em>

    Get PDF
    <div><p>The decision to replicate its DNA is of crucial importance for every cell and, in many organisms, is decisive for the progression through the entire cell cycle. A comparison of animals versus yeast has shown that, although most of the involved cell-cycle regulators are divergent in both clades, they fulfill a similar role and the overall network topology of G1/S regulation is highly conserved. Using germline development as a model system, we identified a regulatory cascade controlling entry into S phase in the flowering plant <em>Arabidopsis thaliana</em>, which, as a member of the <em>Plantae</em> supergroup, is phylogenetically only distantly related to <em>Opisthokonts</em> such as yeast and animals. This module comprises the <em>Arabidopsis</em> homologs of the animal transcription factor E2F, the plant homolog of the animal transcriptional repressor Retinoblastoma (Rb)-related 1 (RBR1), the plant-specific F-box protein F-BOX-LIKE 17 (FBL17), the plant specific cyclin-dependent kinase (CDK) inhibitors KRPs, as well as CDKA;1, the plant homolog of the yeast and animal Cdc2<sup>+</sup>/Cdk1 kinases. Our data show that the principle of a double negative wiring of Rb proteins is highly conserved, likely representing a universal mechanism in eukaryotic cell-cycle control. However, this negative feedback of Rb proteins is differently implemented in plants as it is brought about through a quadruple negative regulation centered around the F-box protein FBL17 that mediates the degradation of CDK inhibitors but is itself directly repressed by Rb. Biomathematical simulations and subsequent experimental confirmation of computational predictions revealed that this regulatory circuit can give rise to hysteresis highlighting the here identified dosage sensitivity of CDK inhibitors in this network.</p> </div

    Antibody-negative paraneoplastic autoimmune multiorgan syndrome (PAMS) in a patient with follicular lymphoma accompanied by an excess of peripheral blood CD8+ lymphocytes

    No full text
    Paraneoplastic autoimmune multiorgan syndrome (PAMS) is a life-threatening autoimmune disease associated with malignancies. Here, we present a patient initially misdiagnosed with "chronic" Stevens–Johnson syndrome. Over a year later, the patient was diagnosed with stage IV follicular lymphoma and treated with an anti-CD20 antibody. At this time, his skin condition had significantly worsened, with erythroderma and massive mucosal involvement, including in the mouth, nose, eyes, and genital region. Histopathology revealed lichenoid infiltrates with interface dermatitis, dyskeratoses, necrotic keratinocytes, and a dense CD8+ infiltrate with strong epidermotropism. Direct and indirect immunofluorescence tests for autoantibodies were negative. Remarkably, we retrospectively discovered a chronic increase in peripheral CD8+ lymphocytes, persisting for over a year. Consequently, the patient was diagnosed with antibody-negative PAMS. Three weeks later, he succumbed to respiratory failure. This dramatic case highlights the challenges in diagnosing PAMS, particularly in cases where immunofluorescence assays are negative. Importantly, we observed, for the first time, a chronic excess of CD8+ peripheral blood lymphocytes, associated with PAMS, consistent with the systemic, autoreactive T-cell-driven processes that characterize this condition
    corecore