614 research outputs found
Loss of miR-204 expression is a key event in melanoma
Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma.
On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds − 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS
Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent
The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and corniWed layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, diVerentiation, and cell death. To determine genes responsible for initiating and maintaining a corniWed epidermis, organotypic cultures comprised entirely of stratiWed KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array proWle of submerged cultures containing KCs predominantly in a proliferative (relatively undiVerentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct proWle of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, diVerentiation, and cell death. Next, diVerentially expressed microRNAs (miRNAs) and long noncoding (lncRNA) RNAs were identiWed in EEs. Several diVerentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but downregulated by 120 h. To study the lncRNA regulation in EEs, we proWled lncRNA expression by microarray and validated the results by qRT-PCR. Although the diVerential expression of several lncRNAs is suggestive of a role in epidermal diVerentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin
DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens
Loss of miR-204 expression is a key event in melanoma
Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma.
On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds − 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
Abstract
Background
Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings.
Methods
We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding.
Results
Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4.
Conclusions
These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci.http://deepblue.lib.umich.edu/bitstream/2027.42/109537/1/12920_2013_Article_485.pd
Inside and out: the activities of senescence in cancer.
The core aspect of the senescent phenotype is a stable state of cell cycle arrest. However, this is a disguise that conceals a highly active metabolic cell state with diverse functionality. Both the cell-autonomous and the non-cell-autonomous activities of senescent cells create spatiotemporally dynamic and context-dependent tissue reactions. For example, the senescence-associated secretory phenotype (SASP) provokes not only tumour-suppressive but also tumour-promoting responses. Senescence is now increasingly considered to be an integrated and widespread component that is potentially important for tumour development, tumour suppression and the response to therapy.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nrc377
Приклади завдань для позакласної роботи з інформатики у початковій школі
У статті коротко описана методика проведення позакласної роботи з інформатики у початковій школі
Immunohistochemical detection of papillomavirus antigens in Kaposi's sarcoma
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30201/1/0000589.pd
Childhood indicators of susceptibility to subsequent cervical cancer
Common warts could indicate cervical cancer susceptibility, as both are caused by human papillomavirus (HPV). Eczema was also investigated, as atopic eczema has been negatively associated with warts, but non-atopic eczema may be associated with compromised host defences, as observed in patients with HIV, suggesting increased susceptibility to HPV infection and cervical cancer. ‘Cervical cancer’ was self-reported during an interview by 87 of 7594 women members of two longitudinal British birth cohorts. The accuracy of the diagnoses is limited by lack of confirmation using medical records. Odds ratios are adjusted for common warts and eczema in childhood; and cigarette smoking, number of cohabiting partners and social class in early adult life. The odds ratios of warts and eczema with cervical cancer are 2.50 (95% confidence interval 1.14–5.47) and 3.27 (1.95–5.49), respectively. The association of eczema with cervical cancer is independent of hay fever as a marker of atopy, suggesting the importance of non-atopic eczema. Both heavier smoking compared with non-smoking and four or more cohabiting partners compared with one/none have odds ratios for cervical cancer of 8.26 (4.25–15.10) and 4.89 (1.39–17.18), respectively. Common warts in childhood may indicate cervical cancer susceptibility; this and the relationship with eczema deserves investigation
- …
