40 research outputs found

    Expanding the Genetic Code of and to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics

    Get PDF
    The incorporation of non-canonical amino acids (ncAAs) into ribosomally synthesized and post-translationally modified peptides, e.g., nisin from the Gram-positive bacterium Lactococcus lactis, bears great potential to expand the chemical space of various antimicrobials. The ncAA NΔ-Boc-L-lysine (BocK) was chosen for incorporation into nisin using the archaeal pyrrolysyl-tRNA synthetase–tRNAPyl pair to establish orthogonal translation in L. lactis for read-through of in-frame amber stop codons. In parallel, recombinant nisin production and orthogonal translation were combined in Escherichia coli cells. Both organisms synthesized bioactive nisin(BocK) variants. Screening of a nisin amber codon library revealed suitable sites for ncAA incorporation and two variants displayed high antimicrobial activity. Orthogonal translation in E. coli and L. lactis presents a promising tool to create new-to-nature nisin derivatives

    Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids

    Get PDF
    Nature has a variety of possibilities to create new protein functions by modifying the sequence of the individual amino acid building blocks. However, all variations are based on the 20 canonical amino acids (cAAs). As a way to introduce additional physicochemical properties into polypeptides, the incorporation of non-canonical amino acids (ncAAs) is increasingly used in protein engineering. Due to their relatively short length, the modification of ribosomally synthesized and post-translationally modified peptides by ncAAs is particularly attractive. New functionalities and chemical handles can be generated by specific modifications of individual residues. The selective pressure incorporation (SPI) method utilizes auxotrophic host strains that are deprived of an essential amino acid in chemically defined growth media. Several structurally and chemically similar amino acid analogs can then be activated by the corresponding aminoacyl-tRNA synthetase and provide residue-specific cAA(s) → ncAA(s) substitutions in the target peptide or protein sequence. Although, in the context of the SPI method, ncAAs are also incorporated into the host proteome during the phase of recombinant gene expression, the majority of the cell's resources are assigned to the expression of the target gene. This enables efficient residue-specific incorporation of ncAAs often accompanied with high amounts of modified target. The presented work describes the in vivo incorporation of six proline analogs into the antimicrobial peptide nisin, a lantibiotic naturally produced by Lactococcus lactis. Antimicrobial properties of nisin can be changed and further expanded during its fermentation and expression in auxotrophic Escherichia coli strains in defined growth media. Thereby, the effects of residue-specific replacement of cAAs with ncAAs can deliver changes in antimicrobial activity and specificity. Antimicrobial activity assays and fluorescence microscopy are used to test the new nisin variants for growth inhibition of a Gram-positive Lactococcus lactis indicator strain. Mass spectroscopy is used to confirm ncAA incorporation in bioactive nisin variants

    Prospects of In vivo Incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides

    Get PDF
    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed

    Landscapes of Heathrow : the aircraft landing gear compartment and the politics of global transfer

    Get PDF
    This paper, an output of an art research project, explores the agency of the aircraft landing gear compartment in global transfer. Through the prism of historical events involving aircraft preparing to land at London Heathrow, it reflects on the part played by the compartment in ecological and humanitarian struggle. Its theoretical frameworks include John Ruskin’s writing on geology, new materialism, and the planetary garden. These are brought into proximity with methodologies and collaborations developed through practice-based elements of the research, such as architectural modelling, geoforensic science and exhibition making. It incorporates an account of the process of reconstructing a compartment, as well as extracts from a microstratigraphic survey commissioned as part of the project. It examines the landing gear compartment’s capacity as a vessel in which dust, seeds, insects, pollen and even people are transported around the globe. It explores, too, its role as expository instrument, as far as it makes available for inspection the politics inscribed into its formal, spatial and temporal configuration. The paper argues that the wheel bay gives shape to a set of otherwise intangible aeromobilities, knowledge of which is integral to a nuanced understanding of the political geography of London Heathrow

    Presentation_1.PDF

    No full text
    <p>The incorporation of non-canonical amino acids (ncAAs) into ribosomally synthesized and post-translationally modified peptides, e.g., nisin from the Gram-positive bacterium Lactococcus lactis, bears great potential to expand the chemical space of various antimicrobials. The ncAA N<sub>Δ</sub>-Boc-L-lysine (BocK) was chosen for incorporation into nisin using the archaeal pyrrolysyl-tRNA synthetase–tRNA<sup>Pyl</sup> pair to establish orthogonal translation in L. lactis for read-through of in-frame amber stop codons. In parallel, recombinant nisin production and orthogonal translation were combined in Escherichia coli cells. Both organisms synthesized bioactive nisin(BocK) variants. Screening of a nisin amber codon library revealed suitable sites for ncAA incorporation and two variants displayed high antimicrobial activity. Orthogonal translation in E. coli and L. lactis presents a promising tool to create new-to-nature nisin derivatives.</p
    corecore