10 research outputs found
23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7
We present photometric and spectroscopic observations of 23 high redshift
supernovae spanning a range of z=0.34-1.03, 9 of which are unambiguously
classified as Type Ia. These supernovae were discovered during the IfA Deep
Survey, which began in September 2001 and observed a total of 2.5 square
degrees to a depth of approximately m=25-26 in RIZ over 9-17 visits, typically
every 1-3 weeks for nearly 5 months, with additional observations continuing
until April 2002. We give a brief description of the survey motivations,
observational strategy, and reduction process. This sample of 23 high-redshift
supernovae includes 15 at z>0.7, doubling the published number of objects at
these redshifts, and indicates that the evidence for acceleration of the
universe is not due to a systematic effect proportional to redshift. In
combination with the recent compilation of Tonry et al. (2003), we calculate
cosmological parameter density contours which are consistent with the flat
universe indicated by the CMB (Spergel et al. 2003). Adopting the constraint
that Omega_total = 1.0, we obtain best-fit values of (Omega_m,
Omega_Lambda)=(0.33, 0.67) using 22 SNe from this survey augmented by the
literature compilation. We show that using the empty-beam model for
gravitational lensing does not eliminate the need for Omega_Lambda > 0.
Experience from this survey indicates great potential for similar large-scale
surveys while also revealing the limitations of performing surveys for z>1 SNe
from the ground.Comment: 67 pages, 12 figures, 12 tables, accepted for publication in the
Astrophysical Journa
The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7
The Carnegie Supernova Project (CSP) is designed to measure the luminosity
distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set
observational constraints on the dark energy contribution to the total energy
content of the Universe. The CSP differs from other projects to date in its
goal of providing an I-band {rest-frame} Hubble diagram. Here we present the
first results from near-infrared (NIR) observations obtained using the Magellan
Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with
those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present
light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia
and we compare these data to 21 new SNe Ia at low redshift. These data support
the conclusion that the expansion of the Universe is accelerating. When
combined with independent results from baryon acoustic oscillations (Eisenstein
et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and
Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter
and dark energy densities, respectively. If we parameterize the data in terms
of an equation of state, w, assume a flat geometry, and combine with baryon
acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09
(systematic). The largest source of systematic uncertainty on w arises from
uncertainties in the photometric calibration, signaling the importance of
securing more accurate photometric calibrations for future supernova cosmology
programs. Finally, we conclude that either the dust affecting the luminosities
of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way
(where R_V = 3.1), or that there is an additional intrinsic color term with
luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the
Astrophysical Journa
Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7
We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z = 0.34-1.03, nine of which are unambiguously classified as Type la. These SNe were discovered during the IfA Deep Survey, which began in 2001Partial support for this work was provided by NASA grants
GO-08641 and GO-09118 from the Space Telescope Science
Institute, which is operated by AURA, Inc., under NASA
contract NAS5-26555. Funding was also provided by NSF
grant AST 02-06329. S. T. H. acknowledges support from the
NASA LTSA grant NAG5-9364
Dome A site testing and future plans
In January 2005, members of a Chinese expedition team were the first humans to visit Dome A on the Antarctic plateau, a site predicted to be one of the very best astronomical sites on earth. In 2006, the Chinese Center for Antarctic Astronomy (CCAA) was founded to promote the development of astronomy in Antarctica, especially at Dome A. CCAA has since taken part in two traverses to Dome A, organized by the Polar Research Institute of China (PRIC), in the austral summers of 2007/2008 and 2008/2009. These traverses resulted in the installation of many site-testing and science instruments, supported by the PLATO observatory. The Chinese Small Telescope ARray (CSTAR) has produced excellent results from Dome A. Our future plans include further site-testing work, and the following full-scale science instruments: three 0.5-m Antarctic Schmidt Telescopes (AST3), and a proposed 4-m telescope for wide-field infrared high spatial-resolution surveys. The first AST3 telescope is under construction and is scheduled for installation in 2011.8 page(s
The PLATO antarctic site testing observatory
Over a decade of site testing in Antarctica has shown that both South Pole and Dome C are xceptional sites for astronomy, with certain atmospheric conditions superior to those at existing mid-latitude sites. However, the highest point on the Antarctic plateau, Dome A, is expected to experience colder atmospheric temperatures, lower wind speeds, and a turbulent boundary layer that is confined closer to the ground. The Polar Research Institute of China, who were the first to visit the Dome A site in January 2005, plan to establish a permanently manned station there within the next decade. As part of this process they conducted a second expedition to Dome A, arriving via overland traverse in January 2008. This traverse involved the delivery and installation of the PLATeau Observatory (PLATO). PLATO is an automated self- powered astrophysical site testing observatory, developed by the University of New South Wales. A number of international institutions have contributed site testing instruments measuring turbulence, optical sky background, and sub-millimetre transparency. In addition, a set of science instruments are providing wide-field high time resolution optical photometry and terahertz imaging of the Galaxy. We present here an overview of the PLATO system design and instrumentation suite.11 page(s
PLATO-A robotic observatory for the Antarctic plateau
PLATO is a fully-robotic observatory designed for operation in Antarctica. It generates its own electricity (about 1 kW), heat (sufficient to keep two 10-foot shipping containers comfortably above 0°C when the outside temperature is at -70°C, and connects to the internet using the Iridium satellite system (providing ~30 MB/day of data transfer). Following a successful first year of operation at Dome A during 2008, PLATO was upgraded with new instruments for 2009.6 page(s
A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time
The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the 'DeepDrill' survey, which used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two bands, centred on 3.6 and 4.5 μm. These observations expand the area that was covered by an earlier set of observations in these three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data cover the footprints of the LSST DDFs in the Extended Chandra Deep Field-South (ECDFS) field, the ELAIS-S1 field (ES1), and the XMM-Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate 5σ point-source depth of 2 μJy (corresponding to an AB magnitude of 23.1; sufficient to detect a 1011 M⊙ galaxy out to z ≈ 5) in each of the two bands over a total area of ≈ 29 deg2. The dual-band catalogues contain a total of 2.35 million sources. In this paper, we describe the observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the source counts to predictions from the Shark semi-analytic model of galaxy formation. We also identify a population of sources with extremely red ([3.6]-[4.5] >1.2) colours which we show mostly consists of highly obscured active galactic nuclei