252 research outputs found

    Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity

    Get PDF
    BACKGROUND: Metabotropic glutamate receptor 4 (mGluR4) and dopamine D2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D2 receptor antagonist eticlopride, on two distinct forms of impulsivity. METHODS: Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. RESULTS: Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. CONCLUSIONS: These findings demonstrate that mGluR4s, in conjunction with D2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes.This research was supported by a Medical Research Council (MRC) grant to JWD (G0701500) and a grant from Boehringer Ingelheim Pharma GmbH & Co. KG. This work was carried out at Boehringer Ingelheim Pharma GmbH & Co. KG in Germany and the Behavioural and Clinical Neuroscience Institute (BCNI) at Cambridge University. The BCNI is jointly supported by the MRC (G1000183) and Wellcome Trust (093875/Z/10/Z)

    Fiber-Based Laser Transmitter at 1.57 Micrometers for Remote Sensing of Atmospheric Carbon Dioxide from Satellites

    Get PDF
    Over the past 20 years, NASA Goddard has successfully developed space-based lidar for remote sensing studies of the Earth and planets. The lidar in all missions to date have used diode pumped Nd:YAG laser transmitters. Recently we have been concentrating work on developing integrated path differential absorption (IPDA) lidar to measure greenhouse gases, with the goal of measurements from space. Due to the absorption spectrum of CO2 a fiber-based master oscillator power amplifier (MOPA) laser with a tunable seed source is an attractive laser choice. Fiber-based lasers offer a number of potential advantages for space, but since they are relatively new, challenges exist in developing them. In order to reduce risks for new missions using fiber-based lasers, we developed a 30- month plan to mature the technology of a candidate laser transmitter for space-based CO2 measurements to TRL-6. This work is also intended to reduce development time and costs and increase confidence in future mission success

    Metabolic Profiling of CSF: Evidence That Early Intervention May Impact on Disease Progression and Outcome in Schizophrenia

    Get PDF
    BACKGROUND: The identification of schizophrenia biomarkers is a crucial step towards improving current diagnosis, developing new presymptomatic treatments, identifying high-risk individuals and disease subgroups, and assessing the efficacy of preventative interventions at a rate that is not currently possible. METHODS AND FINDINGS: (1)H nuclear magnetic resonance spectroscopy in conjunction with computerized pattern recognition analysis were employed to investigate metabolic profiles of a total of 152 cerebrospinal fluid (CSF) samples from drug-naïve or minimally treated patients with first-onset paranoid schizophrenia (referred to as “schizophrenia” in the following text) and healthy controls. Partial least square discriminant analysis showed a highly significant separation of patients with first-onset schizophrenia away from healthy controls. Short-term treatment with antipsychotic medication resulted in a normalization of the disease signature in over half the patients, well before overt clinical improvement. No normalization was observed in patients in which treatment had not been initiated at first presentation, providing the first molecular evidence for the importance of early intervention for psychotic disorders. Furthermore, the alterations identified in drug-naïve patients could be validated in a test sample set achieving a sensitivity and specificity of 82% and 85%, respectively. CONCLUSIONS: Our findings suggest brain-specific alterations in glucoregulatory processes in the CSF of drug-naïve patients with first-onset schizophrenia, implying that these abnormalities are intrinsic to the disease, rather than a side effect of antipsychotic medication. Short-term treatment with atypical antipsychotic medication resulted in a normalization of the CSF disease signature in half the patients well before a clinical improvement would be expected. Furthermore, our results suggest that the initiation of antipsychotic treatment during a first psychotic episode may influence treatment response and/or outcome

    Dorsal and ventral striatal dopamine D1 and D2 receptors differentially modulate distinct phases of serial visual reversal learning

    Get PDF
    Funder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268Funder: No personal funding for this projectFunder: GlaxoSmithKline foundation (GSK); doi: https://doi.org/10.13039/501100002066Funder: Shionogi (Shionogi & Co. Ltd.); doi: https://doi.org/10.13039/501100005612Abstract: Impaired cognitive flexibility in visual reversal-learning tasks has been observed in a wide range of neurological and neuropsychiatric disorders. Although both human and animal studies have implicated striatal D2-like and D1-like receptors (D2R; D1R) in this form of flexibility, less is known about the contribution they make within distinct sub-regions of the striatum and the different phases of visual reversal learning. The present study investigated the involvement of D2R and D1R during the early (perseverative) phase of reversal learning as well as in the intermediate and late stages (new learning) after microinfusions of D2R and D1R antagonists into the nucleus accumbens core and shell (NAcC; NAcS), the anterior and posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) on a touchscreen visual serial reversal-learning task. Reversal learning was improved after dopamine receptor blockade in the nucleus accumbens; the D1R antagonist, SCH23390, in the NAcS and the D2R antagonist, raclopride, in the NAcC selectively reduced early, perseverative errors. In contrast, reversal learning was impaired by D2R antagonism, but not D1R antagonism, in the dorsal striatum: raclopride increased errors in the intermediate phase after DMS infusions, and increased errors across phases after DLS infusions. These findings indicate that D1R and D2R modulate different stages of reversal learning through effects localised to different sub-regions of the striatum. Thus, deficits in behavioral flexibility observed in disorders linked to dopamine perturbations may be attributable to specific D1R and D2R dysfunction in distinct striatal sub-regions

    Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

    Get PDF
    Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases

    Undifferentiated Connective Tissue Disease-Associated Interstitial Lung Disease: Changes in Lung Function

    Get PDF
    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a ≥5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27–53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an “idiopathic” interstitial pneumonia

    Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein

    Get PDF
    Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine
    corecore