127 research outputs found

    Ground Water Monitoring Project for Arkansas, Phase III

    Get PDF
    This report is composed of two parts. The first part is an interpretation of the pesticide and nitrate data collected in Woodruff County based on samples collected during 1994. Because there is an indication that there were hydrological differences between 1994 and 1995, and because most of the pesticide data is from 1994, this interpretive portion is restricted to 1994 data. Six wells initially sampled in 1994 that contained pesticides had continuing contamination in re-sampling in 1994 and 1995. Part II lists a seventh well in Woodruff County that contained pesticides in February and May of 199

    Completion Report: Pesticide and Nitrate Monitoring Results for Craighead, Mississippi, and Poinsett Counties, Arkansas: Phase II

    Get PDF
    Because of the concern for potential contamination of ground water by agricultural chemicals, 38 wells drilled in the Mississippi River Valley alluvial aquifer in Mississippi County and the eastern parts of Craighead and Poinsett Counties, Arkansas were analyzed for pesticides and nitrate. The pesticide, fluometuron, was detected in one sample at a concentration of 0.5 mg/L. Bentazon was detected in three samples at concentrations of 2.5, 0.3, and 0.3 mg/L. The occurrences of the pesticides appear to represent isolated incidents rather than a widespread aquifer contamination. All detections were below health and safety standards. Nitrate is present in several wells at concentrations above 0.15 mg/L, one of which exceeded the EPA established maximum contaminant level for drinking water of 10 milligrams per liter as nitrogen. Except for two wells nitrate and iron are not present together at concentrations above 0.15 mg!L. This is probably due to microbially mediated reactions. Nitrate concentrations above 0.15 mg/L is only present in wells that are less than 60 feet deep and near permeable soils. Iron is present in wells that are not near permeable soils or wells that are greater than 40 feet deep, and may exceed 1 mg/L in some cases

    Detection of two dissimilar chronic wasting disease isolates in two captive Rocky Mountain elk (\u3ci\u3eCervus canadensis\u3c/i\u3e) herds: Two distinctive chronic wasting disease isolates identified in captive elk

    Get PDF
    Chronic wasting disease (CWD) continues to spread in both wild and captive cervid herds in North America and has now been identified in wild reindeer and moose in Norway, Finland and Sweden. There is limited knowledge about the variety and characteristics of isolates or strains of CWD that exist in the landscape and their implications on wild and captive cervid herds. In this study, we evaluated brain samples from two captive elk herds that had differing prevalence, history and timelines of CWD incidence. Site 1 had a 16-year history of CWD with a consistently low prevalence between 5% and 10%. Twelve of fourteen naïve animals placed on the site remained CWD negative after 5 years of residence. Site 2 herd had a nearly 40-year known history of CWD with long-term environmental accrual of prion leading to nearly 100% of naïve animals developing clinical CWD within two to 12 years. Obex samples of several elk from each site were compared for CWD prion strain deposition, genotype in prion protein gene codon 132, and conformational stability of CWD prions. CWD prions in the obex from site 2 had a lower conformational stability than those from site 1, which was independent of prnp genotype at codon 132. These findings suggest the existence of different CWD isolates between the two sites and suggest potential differential disease attack rates for different CWD strains

    A multicenter, longitudinal, interventional, double blind randomized clinical trial in hematopoietic cell transplant recipients residing in remote areas: Lessons learned from the late cytomegalovirus prevention trial

    Get PDF
    AbstractPurposeThe logistics of conducting double-blinded phase III clinical trials with participants residing in remote locations are complex. Here we describe the implementation of an interventional trial for the prevention of late cytomegalovirus (CMV) disease in hematopoietic cell transplantation (HCT) subjects in a long-term follow-up environment.MethodsA total of 184 subjects at risk for late CMV disease surviving 80 days following allogeneic HCT were randomized to receive six months of valganciclovir or placebo. Subjects were followed through day 270 post-transplant at their local physician's office within the United States. Anti-viral treatment interventions were based on CMV DNAemia as measured by polymerase chain reaction (PCR) (>1000 copies/mL) and granulocyte colony stimulating factor (G-CSF) was prescribed for neutropenia (absolute neutrophil count (ANC < 1.0 × 109 cells/L). Blood samples for viral testing and safety monitoring were shipped to a central laboratory by overnight carrier. Real-time communication was established between the coordinating center and study sites, primary care physicians, and study participants to facilitate starting, stopping and dose adjustments of antiviral drugs and G-CSF. The time required to make these interventions was analyzed.ResultsOf the 4169 scheduled blood specimens, 3832 (92%) were received and analyzed; the majority (97%) arriving at the central site within 2 days. Among subjects with positive CMV DNAemia (N = 46), over 50% received open label antiviral medication within one day. The median time to start G-CSF for neutropenia was <1 day after posting of laboratory results (range 0–6; N = 38). Study drug dose adjustments for abnormal renal function were implemented 203 times; within one day for 48% of cases and within 2 days for 80% of cases.ConclusionComplex randomized, double-blind, multicenter interventional trials with treatment decisions made at a central coordinating site can be conducted safely and effectively according to Good Clinical Practice (GCP) guidelines over a large geographic area

    Age-related changes in neural functional connectivity and its behavioral relevance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting-state recordings are characterized by widely distributed networks of coherent brain activations. Disturbances of the default network - a set of regions that are deactivated by cognitive tasks and activated during passive states - have been detected in age-related disorders such as Alzheimer's or Parkinson's disease but alterations in the course of healthy aging still need to be explored.</p> <p>Results</p> <p>Using magnetoencephalography (MEG), the present study investigated how age-related functional resting-state brain connectivity links to cognitive performance in healthy aging in fifty-three participants ranging in age from 18 to 89 years. A beamforming technique was used to reconstruct the brain activity in source space and the interregional coupling was investigated using partial directed coherence (PDC). We found significant age-related alterations of functional resting-state connectivity. These are mainly characterized by reduced information input into the posterior cingulum/precuneus region together with an enhanced information flow to the medial temporal lobe. Furthermore, higher inflow in the medial temporal lobe subsystem was associated with weaker cognitive performance whereas stronger inflow in the posterior cluster was related to better cognitive performance.</p> <p>Conclusion</p> <p>This is the first study to show age-related alterations in subsystems of the resting state network that are furthermore associated with cognitive performance.</p

    Prion protein interaction with soil humic substances: environmental implications

    Get PDF
    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore