8 research outputs found

    Interactions between DNA viruses, ND10 and the DNA damage response

    No full text
    ND10 are small nuclear substructures that are defined by the presence the promyelocytic leukaemia protein PML. Many other proteins have been detected within ND10, a complexity that is reflected in reports of their involvement in multiple cellular pathways that include the regulation of gene expression, chromatin dynamics, protein modification, apoptosis, p53 function, senescence, DNA repair, the interferon response and viral infection. This review summarizes recent evidence of similarities between the behaviour of ND10 components and DNA repair pathway proteins in response to viral infection and DNA damage. ND10 structures become associated with the parental genomes and early replication compartments of many DNA viruses, and DNA repair pathway proteins are also recruited to these sites. Similarly, PML and DNA repair proteins are recruited to sites of DNA damage. The mechanisms by which these events might occur, and the implications for ND10 function in DNA virus infection and chromatin metabolism, are discussed

    Functions for fish mucus

    No full text

    III. ABTEILUNG

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore