11 research outputs found

    HY5 is not integral to light mediated stomatal development in Arabidopsis.

    Get PDF
    Light is a crucial signal that regulates many aspects of plant physiology and growth including the development of stomata, the pores in the epidermal surface of the leaf. Light signals positively regulate stomatal development leading to changes in stomatal density and stomatal index (SI; the proportion of cells in the epidermis that are stomata). Both phytochrome and cryptochrome photoreceptors are required to regulate stomatal development in response to light. The transcription factor ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light signalling, acting downstream of photoreceptors. We hypothesised that HY5 could regulate stomatal development in response to light signals due to the putative presence of HY5 binding sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide regulator of stomatal development. Our analysis shows that HY5 does have the potential to regulate the STOM promoter in vitro and that HY5 is expressed in both the epidermis and mesophyll. However, analysis of hy5 and hy5 hyh double mutants (HYH; HY5-HOMOLOG), found that they had normal stomatal development under different light conditions and the expression of stomatal developmental genes was not perturbed following light shift experiments. Analysis of stable lines overexpressing HY5 also showed no change in stomatal development or the expression of stomatal developmental genes. We therefore conclude that whilst HY5 has the potential to regulate the expression of STOM, it does not have a major role in regulating stomatal development in response to light signals

    Molecular control of stomatal development

    Get PDF
    Plants have evolved developmental plasticity which allows the up- or down-regulation of photosynthetic and water loss capacities as new leaves emerge. This developmental plasticity enables plants to maximise fitness and to survive under differing environments. Stomata play a pivotal role in this adaptive process. These microscopic pores in the epidermis of leaves control gas exchange between the plant and its surrounding environment. Stomatal development involves regulated cell fate decisions that ensure optimal stomatal density and spacing, enabling efficient gas exchange. The cellular patterning process is regulated by a complex signalling pathway involving extracellular ligand-receptor interactions, which, in turn, modulate the activity of three master transcription factors essential for the formation of stomata. Here, we review the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases. We discuss how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production

    HY5 is not integral to light mediated stomatal development in Arabidopsis.

    No full text
    Light is a crucial signal that regulates many aspects of plant physiology and growth including the development of stomata, the pores in the epidermal surface of the leaf. Light signals positively regulate stomatal development leading to changes in stomatal density and stomatal index (SI; the proportion of cells in the epidermis that are stomata). Both phytochrome and cryptochrome photoreceptors are required to regulate stomatal development in response to light. The transcription factor ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light signalling, acting downstream of photoreceptors. We hypothesised that HY5 could regulate stomatal development in response to light signals due to the putative presence of HY5 binding sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide regulator of stomatal development. Our analysis shows that HY5 does have the potential to regulate the STOM promoter in vitro and that HY5 is expressed in both the epidermis and mesophyll. However, analysis of hy5 and hy5 hyh double mutants (HYH; HY5-HOMOLOG), found that they had normal stomatal development under different light conditions and the expression of stomatal developmental genes was not perturbed following light shift experiments. Analysis of stable lines overexpressing HY5 also showed no change in stomatal development or the expression of stomatal developmental genes. We therefore conclude that whilst HY5 has the potential to regulate the expression of STOM, it does not have a major role in regulating stomatal development in response to light signals

    A role for PHANTASTICA in medio-lateral regulation of adaxial domain development in tomato and tobacco leaves

    No full text
    BACKGROUND AND AIMS: Diverse leaf forms in nature can be categorized into two groups: simple and compound. A simple leaf has a single blade unit, whilst a compound leaf is dissected into leaflets. For both simple and compound leaves, a MYB domain transcription factor PHANTASTICA (PHAN) plays an important role in establishing the adaxial domain in the leaf. Absence of PHAN in arabidopsis and antirrhinum leaves supresses blade development, and in tomato suppresses leaflet development. However, in the rachis and petiole regions of tomato leaves where PHAN and the adaxial domain coexist, it has been unclear why leaf blade and leaflets are not formed. We hypothesized that PHAN regulates the medio-lateral extent of the adaxial domain, thereby determining compound leaf architecture. METHODS: To test this hypothesis, we generated and analysed transgenic tomato plants expressing tomato PHAN (SlPHAN) under the Cauliflower mosaic virus (CaMV) 35S promoter in both sense and antisense orientations, and tobacco plants that over-express tomato SlPHAN. KEY RESULTS: Modulations in SlPHAN resulted in a variety of leaf morphologies such as simple, ternate and compound in either a peltate or non-peltate arrangement. Measurements of the extent of the adaxial domain along the wild-type tomato leaf axis showed that the adaxial domain is narrowed in the rachis and petiole in comparison with regions where laminar tissue arises. In antiSlPHAN transgenic leaves, no blade or leaflet was formed where the adaxial domain was medio-laterally narrowed, and KNOX gene expression was correlatively upregulated. CaMV35S::SlPHAN expression led to widening of the adaxial domain and ectopic blade outgrowth in the rachis of tomato and in the petiole of tobacco. Taken together, these results suggest that SlPHAN plays a role in medio-lateral extension of the adaxial domain and contributes to final leaf morphology in tomato. CONCLUSIONS: This study provides a novel insight into leaf architecture in tomato and highlights how changes in the expression domain of a master regulator gene such as SlPHAN can be translated into diverse final leaf morphologies
    corecore